Asril Senoaji Soekoco, Ni Luh Wulan Septiani, Muhammad Iqbal, Irzaman, Widagdo Sri Nugroho, Febdian Rusydi, Nugraha, Brian Yuliarto
{"title":"Multilayer textile-based concept for non-invasive biosensor platform","authors":"Asril Senoaji Soekoco, Ni Luh Wulan Septiani, Muhammad Iqbal, Irzaman, Widagdo Sri Nugroho, Febdian Rusydi, Nugraha, Brian Yuliarto","doi":"10.1186/s40691-024-00399-3","DOIUrl":null,"url":null,"abstract":"<div><p>The surface area of the working electrode plays a crucial role in determining the sensor’s performance, especially in enzymatic sensors. Increasing the surface area of the working electrode has a significant impact on the sensor’s functionality. This research focused on developing textile-based sensors using a multi-layer concept, employing the direct coating method. Two different sensors which are multilayer textile-based sensor (MTBS) and single-layer textile-based sensor (STBS) were prepared, while commercial screen-printed carbon electrode (SPCE) was also used as a comparison. The measurements were carried out using potassium ferricyanide solutions with concentrations of 0.01 M, 0.02 M, 0.03 M, 0.04 M, and 0.05 M at a voltage of 1 V, with a maximum duration up to the end of the measurement and a time interval of 0.5 s. According to the research findings, the fluid spreading speed of the SPCE is the lowest when compared to the spreading speeds of the MTBS and STBS. Specifically, the fluid spreading speed of the SPCE is 4.3 times slower than that of the STBS and 51 times slower than that of the MTBS. Utilizing a multi-layer concept with specific coatings can lead to better-performing sensors in terms of stability and sensitivity. The MTBS exhibits the greatest sensitivity, as indicated by its linear equation slope of 717.230 µA µM<sup>−1</sup> cm<sup>−2</sup>.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-024-00399-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-024-00399-3","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
The surface area of the working electrode plays a crucial role in determining the sensor’s performance, especially in enzymatic sensors. Increasing the surface area of the working electrode has a significant impact on the sensor’s functionality. This research focused on developing textile-based sensors using a multi-layer concept, employing the direct coating method. Two different sensors which are multilayer textile-based sensor (MTBS) and single-layer textile-based sensor (STBS) were prepared, while commercial screen-printed carbon electrode (SPCE) was also used as a comparison. The measurements were carried out using potassium ferricyanide solutions with concentrations of 0.01 M, 0.02 M, 0.03 M, 0.04 M, and 0.05 M at a voltage of 1 V, with a maximum duration up to the end of the measurement and a time interval of 0.5 s. According to the research findings, the fluid spreading speed of the SPCE is the lowest when compared to the spreading speeds of the MTBS and STBS. Specifically, the fluid spreading speed of the SPCE is 4.3 times slower than that of the STBS and 51 times slower than that of the MTBS. Utilizing a multi-layer concept with specific coatings can lead to better-performing sensors in terms of stability and sensitivity. The MTBS exhibits the greatest sensitivity, as indicated by its linear equation slope of 717.230 µA µM−1 cm−2.
期刊介绍:
Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor.
The scope of the journal includes the following four technical research divisions:
Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles
Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing
Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion
Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.