Klf9 is essential for cardiac mitochondrial homeostasis

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Nature cardiovascular research Pub Date : 2024-11-08 DOI:10.1038/s44161-024-00561-6
Lei Zhang, Menglin Zhang, Jinlong Huang, Jincan Huang, Yujie Zhang, Yinliang Zhang, Houzao Chen, Cuizhe Wang, Xiangwen Xi, Heng Fan, Jikui Wang, Dingsheng Jiang, Jinwei Tian, Jun Zhang, Yongsheng Chang
{"title":"Klf9 is essential for cardiac mitochondrial homeostasis","authors":"Lei Zhang, Menglin Zhang, Jinlong Huang, Jincan Huang, Yujie Zhang, Yinliang Zhang, Houzao Chen, Cuizhe Wang, Xiangwen Xi, Heng Fan, Jikui Wang, Dingsheng Jiang, Jinwei Tian, Jun Zhang, Yongsheng Chang","doi":"10.1038/s44161-024-00561-6","DOIUrl":null,"url":null,"abstract":"Mitochondrial dynamics and mitophagy are intimately linked physiological processes that are essential for cardiac homeostasis. Here we show that cardiac Krüppel-like factor 9 (Klf9) is dysregulated in human and rodent cardiomyopathy. Both global and cardiac-specific Klf9-deficient mice displayed hypertrophic cardiomyopathy. Klf9 knockout led to mitochondrial disarray and fragmentation, impairing mitochondrial respiratory function in cardiomyocytes. Furthermore, cardiac Klf9 deficiency inhibited mitophagy, thereby causing accumulation of dysfunctional mitochondria and acceleration of heart failure in response to angiotensin II treatment. In contrast, cardiac-specific Klf9 transgene improved cardiac systolic function. Mechanistically, Klf9 knockout decreased the expression of PGC-1α and its target genes involved in mitochondrial energy metabolism. Moreover, Klf9 controlled the expression of Mfn2, thereby regulating mitochondrial dynamics and mitophagy. Finally, adeno-associated virus–mediated Mfn2 rescue in Klf9-CKO hearts improved cardiac mitochondrial and systolic function. Thus, Klf9 integrates cardiac energy metabolism, mitochondrial dynamics and mitophagy. Modulating Klf9 activity may have therapeutic potential in the treatment of heart failure. L. Zhang, M. Zhang, Huang et al. show that Klf9 regulated PGC-1α and Mfn2 expression, contributing to mitochondrial energy metabolism and dynamic regulation, promoting mitophagy, improving cardiac function and revealing a potential therapeutic target.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 11","pages":"1318-1336"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-024-00561-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial dynamics and mitophagy are intimately linked physiological processes that are essential for cardiac homeostasis. Here we show that cardiac Krüppel-like factor 9 (Klf9) is dysregulated in human and rodent cardiomyopathy. Both global and cardiac-specific Klf9-deficient mice displayed hypertrophic cardiomyopathy. Klf9 knockout led to mitochondrial disarray and fragmentation, impairing mitochondrial respiratory function in cardiomyocytes. Furthermore, cardiac Klf9 deficiency inhibited mitophagy, thereby causing accumulation of dysfunctional mitochondria and acceleration of heart failure in response to angiotensin II treatment. In contrast, cardiac-specific Klf9 transgene improved cardiac systolic function. Mechanistically, Klf9 knockout decreased the expression of PGC-1α and its target genes involved in mitochondrial energy metabolism. Moreover, Klf9 controlled the expression of Mfn2, thereby regulating mitochondrial dynamics and mitophagy. Finally, adeno-associated virus–mediated Mfn2 rescue in Klf9-CKO hearts improved cardiac mitochondrial and systolic function. Thus, Klf9 integrates cardiac energy metabolism, mitochondrial dynamics and mitophagy. Modulating Klf9 activity may have therapeutic potential in the treatment of heart failure. L. Zhang, M. Zhang, Huang et al. show that Klf9 regulated PGC-1α and Mfn2 expression, contributing to mitochondrial energy metabolism and dynamic regulation, promoting mitophagy, improving cardiac function and revealing a potential therapeutic target.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Klf9 对心脏线粒体的稳态至关重要
线粒体动力学和有丝分裂是密切相关的生理过程,对心脏稳态至关重要。在这里,我们发现心脏克鲁珀尔样因子 9(Klf9)在人类和啮齿类动物心肌病中失调。整体和心脏特异性 Klf9 缺失小鼠均表现出肥厚型心肌病。Klf9 基因敲除会导致线粒体混乱和破碎,损害心肌细胞的线粒体呼吸功能。此外,心脏 Klf9 缺乏会抑制有丝分裂,从而导致功能障碍线粒体的积累,并在血管紧张素 II 治疗后加速心力衰竭。相比之下,心脏特异性Klf9转基因能改善心脏收缩功能。从机理上讲,Klf9 基因敲除减少了 PGC-1α 及其参与线粒体能量代谢的靶基因的表达。此外,Klf9还能控制Mfn2的表达,从而调节线粒体动力学和有丝分裂。最后,腺相关病毒介导的 Mfn2 挽救了 Klf9-CKO 心脏,改善了心脏线粒体和收缩功能。因此,Klf9整合了心脏能量代谢、线粒体动力学和有丝分裂。调节 Klf9 的活性可能具有治疗心衰的潜力。L. Zhang, M. Zhang, Huang等人的研究表明,Klf9调控PGC-1α和Mfn2的表达,有助于线粒体能量代谢和动态调节,促进有丝分裂,改善心脏功能,揭示了一个潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
GLS2 links glutamine metabolism and atherosclerosis by remodeling artery walls. Glutamine-glutamate imbalance in the pathogenesis of cardiovascular disease. Cardiac regeneration leads to altered Purkinje fiber network and ventricular conduction Klf9 is essential for cardiac mitochondrial homeostasis Influence of sleep on physiological systems in atherosclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1