C. Royer, C. C. Bedford, J. R. Johnson, B. H. N. Horgan, A. Broz, O. Forni, S. Connell, R. C. Wiens, L. Mandon, B. S. Kathir, E. M. Hausrath, A. Udry, J. M. Madariaga, E. Dehouck, R. B. Anderson, P. Beck, O. Beyssac, É. Clavé, S. M. Clegg, E. Cloutis, T. Fouchet, T. S. J. Gabriel, B. J. Garczynski, A. Klidaras, H. T. Manelski, L. Mayhew, J. Núñez, A. M. Ollila, S. Schröder, J. I. Simon, U. Wolf, K. M. Stack, A. Cousin, S. Maurice
{"title":"Intense alteration on early Mars revealed by high-aluminum rocks at Jezero crater","authors":"C. Royer, C. C. Bedford, J. R. Johnson, B. H. N. Horgan, A. Broz, O. Forni, S. Connell, R. C. Wiens, L. Mandon, B. S. Kathir, E. M. Hausrath, A. Udry, J. M. Madariaga, E. Dehouck, R. B. Anderson, P. Beck, O. Beyssac, É. Clavé, S. M. Clegg, E. Cloutis, T. Fouchet, T. S. J. Gabriel, B. J. Garczynski, A. Klidaras, H. T. Manelski, L. Mayhew, J. Núñez, A. M. Ollila, S. Schröder, J. I. Simon, U. Wolf, K. M. Stack, A. Cousin, S. Maurice","doi":"10.1038/s43247-024-01837-2","DOIUrl":null,"url":null,"abstract":"The NASA Perseverance rover discovered light-toned float rocks scattered across the surface of Jezero crater that are particularly rich in alumina ( ~ 35 wt% Al2O3) and depleted in other major elements (except silica). These unique float rocks have heterogeneous mineralogy ranging from kaolinite/halloysite-bearing in hydrated samples, to spinel-bearing in dehydrated samples also containing a dehydrated Al-rich phase. Here we describe SuperCam and Mastcam-Z observations of the float rocks, including the first in situ identification of kaolinite or halloysite on another planet, and dehydrated phases including spinel and apparent partially dehydroxylated kaolinite. The presence of spinel in these samples is likely detrital in origin, surviving kaolinitization, pointing to an ultramafic origin. However, the association of low hydration with increased Al2O3 abundances suggests heating-induced dehydration which could have occurred during the lithification or impact excavation of these rocks. Given the orbital context of kaolinite-bearing megabreccia in the Jezero crater rim, we propose an origin for these rocks involving intense aqueous alteration of the parent material, followed by dehydration/lithification potentially through impact processes, and dispersion into Jezero crater through flood or impact-related processes. Aqueous alteration followed by dehydration and dispersion into Jezero crater is indicated by the identification of kaolinite or halloysite, spinel and a dehydrated Al-rich phase in spectroscopic observations of light-toned float rocks by the Perseverance rover","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-13"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01837-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01837-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The NASA Perseverance rover discovered light-toned float rocks scattered across the surface of Jezero crater that are particularly rich in alumina ( ~ 35 wt% Al2O3) and depleted in other major elements (except silica). These unique float rocks have heterogeneous mineralogy ranging from kaolinite/halloysite-bearing in hydrated samples, to spinel-bearing in dehydrated samples also containing a dehydrated Al-rich phase. Here we describe SuperCam and Mastcam-Z observations of the float rocks, including the first in situ identification of kaolinite or halloysite on another planet, and dehydrated phases including spinel and apparent partially dehydroxylated kaolinite. The presence of spinel in these samples is likely detrital in origin, surviving kaolinitization, pointing to an ultramafic origin. However, the association of low hydration with increased Al2O3 abundances suggests heating-induced dehydration which could have occurred during the lithification or impact excavation of these rocks. Given the orbital context of kaolinite-bearing megabreccia in the Jezero crater rim, we propose an origin for these rocks involving intense aqueous alteration of the parent material, followed by dehydration/lithification potentially through impact processes, and dispersion into Jezero crater through flood or impact-related processes. Aqueous alteration followed by dehydration and dispersion into Jezero crater is indicated by the identification of kaolinite or halloysite, spinel and a dehydrated Al-rich phase in spectroscopic observations of light-toned float rocks by the Perseverance rover
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.