Madeleine Fol, Bruno Tremblay, Stephanie Pfirman, Robert Newton, Stephen Howell, Jean-François Lemieux
{"title":"Revisiting the Last Ice Area projections from a high-resolution Global Earth System Model.","authors":"Madeleine Fol, Bruno Tremblay, Stephanie Pfirman, Robert Newton, Stephen Howell, Jean-François Lemieux","doi":"10.1038/s43247-025-02034-5","DOIUrl":null,"url":null,"abstract":"<p><p>The Last Ice Area-located to the north of Greenland and the northern Canadian Arctic Archipelago-is expected to persist as the central Arctic Ocean becomes seasonally ice-free within a few decades. Projections of the Last Ice Area, however, have come from relatively low resolution Global Climate Models that do not resolve sea ice export through the waterways of the Canadian Arctic Archipelago and Nares Strait. Here we revisit Last Ice Area projections using high-resolution numerical simulations from the Community Earth System Model, which resolves these narrow waterways. Under a high-end forcing scenario, the sea ice of the Last Ice Area thins and becomes more mobile, resulting in a large export southward. Under this potentially worst-case scenario, sea ice of the Last Ice Area could disappear a little more than one decade after the central Arctic Ocean has reached seasonally ice-free conditions. This loss would have profound impacts on ice-obligate species.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"46"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02034-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Last Ice Area-located to the north of Greenland and the northern Canadian Arctic Archipelago-is expected to persist as the central Arctic Ocean becomes seasonally ice-free within a few decades. Projections of the Last Ice Area, however, have come from relatively low resolution Global Climate Models that do not resolve sea ice export through the waterways of the Canadian Arctic Archipelago and Nares Strait. Here we revisit Last Ice Area projections using high-resolution numerical simulations from the Community Earth System Model, which resolves these narrow waterways. Under a high-end forcing scenario, the sea ice of the Last Ice Area thins and becomes more mobile, resulting in a large export southward. Under this potentially worst-case scenario, sea ice of the Last Ice Area could disappear a little more than one decade after the central Arctic Ocean has reached seasonally ice-free conditions. This loss would have profound impacts on ice-obligate species.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.