Xiao-Ye Zhou, Hong-Hui Wu, Jinyong Zhang, Shulong Ye, Turab Lookman, Xinping Mao
{"title":"Unveiling the mechanism of the carbon ordering and martensite tetragonality in Fe–C alloys studied via deep-potential molecular dynamics simulations","authors":"Xiao-Ye Zhou, Hong-Hui Wu, Jinyong Zhang, Shulong Ye, Turab Lookman, Xinping Mao","doi":"10.1016/j.jmst.2024.10.020","DOIUrl":null,"url":null,"abstract":"The martensitic transformation plays a pivotal role in the strengthening and hardening of steels, yet an accurate interatomic potential for a comprehensive description of the martensitic phase formation in Fe–C alloys is lacking. Herein, we develop a deep learning-based interatomic potential to perform molecular dynamics (MD) simulations to study the martensitic phase transformation across a range of carbon (C) concentrations. The results reveal that an increased C concentration leads to a suppression of phase boundary movement and a deceleration of the phase transformation rate. To overcome the timescale limitations inherent in MD simulations, metadynamics sampling was employed to accelerate the simulations of C diffusion. We find that C atoms tend to cluster at distances equivalent to the lattice parameter of Fe with the same sublattice occupation, leading to local lattice tetragonality. Such C-ordered structures effectively inhibit dislocation movement and enhance strength. The stress field induced by dislocations facilitates a higher degree of ordering. The formation of C-ordered structures is identified as a potentially crucial strengthening mechanism for martensitic steels. The consistency between our simulation results and reported experimental observations underscores the effectiveness of the developed DP model in simulating martensitic phase transformation in Fe–C alloys, providing detailed insights into the mechanisms underlying this process.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.020","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The martensitic transformation plays a pivotal role in the strengthening and hardening of steels, yet an accurate interatomic potential for a comprehensive description of the martensitic phase formation in Fe–C alloys is lacking. Herein, we develop a deep learning-based interatomic potential to perform molecular dynamics (MD) simulations to study the martensitic phase transformation across a range of carbon (C) concentrations. The results reveal that an increased C concentration leads to a suppression of phase boundary movement and a deceleration of the phase transformation rate. To overcome the timescale limitations inherent in MD simulations, metadynamics sampling was employed to accelerate the simulations of C diffusion. We find that C atoms tend to cluster at distances equivalent to the lattice parameter of Fe with the same sublattice occupation, leading to local lattice tetragonality. Such C-ordered structures effectively inhibit dislocation movement and enhance strength. The stress field induced by dislocations facilitates a higher degree of ordering. The formation of C-ordered structures is identified as a potentially crucial strengthening mechanism for martensitic steels. The consistency between our simulation results and reported experimental observations underscores the effectiveness of the developed DP model in simulating martensitic phase transformation in Fe–C alloys, providing detailed insights into the mechanisms underlying this process.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.