The protective roles of Oryza glumaepatula and phytohormone in enhancing rice tolerance to cadmium stress by regulating gene expression, morphological, physiological, and antioxidant defense system
Humera Ashraf , Fozia Ghouri , Shafaqat Ali , Syed Asad Hussain Bukhari , Fasih Ullah Haider , Minghui Zhong , Weiwei Xia , Xuelin Fu , Muhammad Qasim Shahid
{"title":"The protective roles of Oryza glumaepatula and phytohormone in enhancing rice tolerance to cadmium stress by regulating gene expression, morphological, physiological, and antioxidant defense system","authors":"Humera Ashraf , Fozia Ghouri , Shafaqat Ali , Syed Asad Hussain Bukhari , Fasih Ullah Haider , Minghui Zhong , Weiwei Xia , Xuelin Fu , Muhammad Qasim Shahid","doi":"10.1016/j.envpol.2024.125311","DOIUrl":null,"url":null,"abstract":"<div><div>The heavy metal cadmium (Cd) is highly poisonous and has received significant attention from environmental scientists due to its harmful impacts on plants. <em>Oryza glumaepatula</em> is a wild rice that contains useful genes against biotic and abiotic stresses. Therefore, the current study used SG007, a single-segment substitution line (SSSL), generated by crossing <em>O. glumaepatula</em> with an elite rice cultivar (HJX74), to evaluate the resistance potential against Cd. Moreover, we assessed the efficacy of strigolactone GR24 (1 μM) against Cd toxicity (100 μM) by investigating physiological, biochemical, and molecular mechanisms in both cultivars (i.e., SG007 and HJX74). The findings of this study revealed that Cd toxicity declined the chlorophyll <em>a</em>, chlorophyll <em>b</em>, and carotenoids by 50%, 20%, and 44% in SG007, and 58%, 39%, and 59% in HJX74 by enhancing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) by 113%, 184%, and 119% in SG007 and 248%, 273% and 195% in HJX74, respectively. GR24 improved growth under Cd stress in both cultivars, and SG007 exhibited better plant growth parameters, antioxidant enzymatic activities, nitric oxide synthase (NOS), and nitric oxide (NO) levels than HJX74 under Cd toxicity. GR24 with SG007 regulated expressions of Cd transporters and reduced the cytological disruptions in cell organelles. The combined utilization of SG007 and GR24 reduced Cd accumulation and oxidative stress and improved plant growth parameters and enzymatic activities. In conclusion, our study highlights the potential of utilizing SG007 in conjunction with GR24 as a practical strategy to mitigate Cd pollution in rice. The results not only underscore the beneficial effects of strigolactone GR24 in alleviating Cd-induced stress but also emphasize the valuable genetic traits of <em>O. glumaepatula</em> in developing rice lines with enhanced tolerance to heavy metals, offering broader implications for sustainable agriculture and crop improvement in contaminated environments.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"364 ","pages":"Article 125311"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749124020281","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The heavy metal cadmium (Cd) is highly poisonous and has received significant attention from environmental scientists due to its harmful impacts on plants. Oryza glumaepatula is a wild rice that contains useful genes against biotic and abiotic stresses. Therefore, the current study used SG007, a single-segment substitution line (SSSL), generated by crossing O. glumaepatula with an elite rice cultivar (HJX74), to evaluate the resistance potential against Cd. Moreover, we assessed the efficacy of strigolactone GR24 (1 μM) against Cd toxicity (100 μM) by investigating physiological, biochemical, and molecular mechanisms in both cultivars (i.e., SG007 and HJX74). The findings of this study revealed that Cd toxicity declined the chlorophyll a, chlorophyll b, and carotenoids by 50%, 20%, and 44% in SG007, and 58%, 39%, and 59% in HJX74 by enhancing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) by 113%, 184%, and 119% in SG007 and 248%, 273% and 195% in HJX74, respectively. GR24 improved growth under Cd stress in both cultivars, and SG007 exhibited better plant growth parameters, antioxidant enzymatic activities, nitric oxide synthase (NOS), and nitric oxide (NO) levels than HJX74 under Cd toxicity. GR24 with SG007 regulated expressions of Cd transporters and reduced the cytological disruptions in cell organelles. The combined utilization of SG007 and GR24 reduced Cd accumulation and oxidative stress and improved plant growth parameters and enzymatic activities. In conclusion, our study highlights the potential of utilizing SG007 in conjunction with GR24 as a practical strategy to mitigate Cd pollution in rice. The results not only underscore the beneficial effects of strigolactone GR24 in alleviating Cd-induced stress but also emphasize the valuable genetic traits of O. glumaepatula in developing rice lines with enhanced tolerance to heavy metals, offering broader implications for sustainable agriculture and crop improvement in contaminated environments.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.