{"title":"Synchronous vanadium bio-reduction/detoxification/recovery and nitrogen attenuation in a membrane aerated biofilm reactor","authors":"Zhiye Sun, Baoan Li, Jun Liu","doi":"10.1016/j.envpol.2025.126095","DOIUrl":null,"url":null,"abstract":"The presence of both pentavalent vanadium [V(Ⅴ)] and nitrogen in wastewaters from vanadium smelting poses significant environmental challenges. However, it remains little in the way of continuous flow biological reactor to concurrently eliminated V(Ⅴ) and nitrogen in wastewaters. Herein, membrane-aerated biofilm reactor (MABR) system was designed to achieve simultaneous nitrification and denitrification (SND) alongside biological reduction, detoxification, and recovery of vanadium. Vanadium and nitrogen removal performances, solid-state characterization, microbial compositions and functional genes, and the mechanism related to the metabolism of vanadium and nitrogen were illuminated. Notably, we identified a potential role for biofilm-derived “secretion” in the transformation of V(Ⅴ) and nitrogen. Our findings revealed that the system achieved SND efficiency of 98.00 ± 0.57% and removed 91.10 ± 3.60% of total vanadium (TV) even at high influent V(Ⅴ) concentrations in continuous flow stage. Batch experiments implied that the conversion of NH<sub>4</sub><sup>+</sup>-N was the limiting process of nitrogen removal in MABR system, and the extracellular polymeric substances (EPS) might play an important role in the conversion of V(Ⅴ) and nitrogen. V(Ⅴ) was reduced to V(Ⅳ), which was immobilized to biofilm and “secretion” by microbial surface functional groups, including C-O, O-C=O and -OH. <em>Acinetobacter</em>, <em>Dechlorobacter</em>, <em>Denitratisoma</em> and <em>Nitrospira</em> were verified as microbes associated with V(Ⅴ) and nitrogen metabolism. The abundance of functional genes pertaining to electron donor, electron transport, and electron acceptor systems increased under high V(V) stimulation. Collectively, the cooperation of biofilm and “secretion” ensured the intensive removal of vanadium and nitrogen. This study provides new insights into the concurrent removal of heavy metal and environmental nutrient.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"43 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.126095","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of both pentavalent vanadium [V(Ⅴ)] and nitrogen in wastewaters from vanadium smelting poses significant environmental challenges. However, it remains little in the way of continuous flow biological reactor to concurrently eliminated V(Ⅴ) and nitrogen in wastewaters. Herein, membrane-aerated biofilm reactor (MABR) system was designed to achieve simultaneous nitrification and denitrification (SND) alongside biological reduction, detoxification, and recovery of vanadium. Vanadium and nitrogen removal performances, solid-state characterization, microbial compositions and functional genes, and the mechanism related to the metabolism of vanadium and nitrogen were illuminated. Notably, we identified a potential role for biofilm-derived “secretion” in the transformation of V(Ⅴ) and nitrogen. Our findings revealed that the system achieved SND efficiency of 98.00 ± 0.57% and removed 91.10 ± 3.60% of total vanadium (TV) even at high influent V(Ⅴ) concentrations in continuous flow stage. Batch experiments implied that the conversion of NH4+-N was the limiting process of nitrogen removal in MABR system, and the extracellular polymeric substances (EPS) might play an important role in the conversion of V(Ⅴ) and nitrogen. V(Ⅴ) was reduced to V(Ⅳ), which was immobilized to biofilm and “secretion” by microbial surface functional groups, including C-O, O-C=O and -OH. Acinetobacter, Dechlorobacter, Denitratisoma and Nitrospira were verified as microbes associated with V(Ⅴ) and nitrogen metabolism. The abundance of functional genes pertaining to electron donor, electron transport, and electron acceptor systems increased under high V(V) stimulation. Collectively, the cooperation of biofilm and “secretion” ensured the intensive removal of vanadium and nitrogen. This study provides new insights into the concurrent removal of heavy metal and environmental nutrient.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.