{"title":"Impact of electron velocity modulation on microwave power performance for AlGaN/GaN HFETs","authors":"Mingyan Wang, Yuanjie Lv, Heng Zhou, Chao Liu, Peng Cui, Zhaojun Lin","doi":"10.1063/5.0222095","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrate the effects of electron velocity modulation (Δve/ΔVgs) on the microwave power performance for AlGaN/GaN HFETs. In order to conduct the experiments, AlGaN/GaN HFETs with gate lengths ranging from 500 to 80 nm were fabricated. Electron transport was investigated by coupling a drift-diffusion solver with the Monte Carlo method. As gate lengths (Lg) varied from 500 to 200 nm, the increased polarization Coulomb field scattering led to an increase in Δve/ΔVgs and the stronger electric field (E) increased ve and enhanced the transconductance (gm), which in turn led to a greater power gain (Gp) in the HFETs. The higher power output (Pout) was also due to the increased ve that boosted the saturated output current (Ids,sat). The unique phenomenon that occurs from electron velocity modulation of AlGaN/GaN HFETs at electron densities (ns) < 3.42 × 1012cm−2 can be used as an effective mechanism to enhance the power gain of AlGaN/GaN HFETs.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"11 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222095","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we demonstrate the effects of electron velocity modulation (Δve/ΔVgs) on the microwave power performance for AlGaN/GaN HFETs. In order to conduct the experiments, AlGaN/GaN HFETs with gate lengths ranging from 500 to 80 nm were fabricated. Electron transport was investigated by coupling a drift-diffusion solver with the Monte Carlo method. As gate lengths (Lg) varied from 500 to 200 nm, the increased polarization Coulomb field scattering led to an increase in Δve/ΔVgs and the stronger electric field (E) increased ve and enhanced the transconductance (gm), which in turn led to a greater power gain (Gp) in the HFETs. The higher power output (Pout) was also due to the increased ve that boosted the saturated output current (Ids,sat). The unique phenomenon that occurs from electron velocity modulation of AlGaN/GaN HFETs at electron densities (ns) < 3.42 × 1012cm−2 can be used as an effective mechanism to enhance the power gain of AlGaN/GaN HFETs.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.