Tiancheng Zhao, Yuan Xu, Jiacheng Liu, Xiang Bao, Liu Yuan, Deen Gu
{"title":"Temperature-dependent behavior of VO2-based artificial neurons","authors":"Tiancheng Zhao, Yuan Xu, Jiacheng Liu, Xiang Bao, Liu Yuan, Deen Gu","doi":"10.1063/5.0231840","DOIUrl":null,"url":null,"abstract":"Temperature serves as a pivotal factor influencing information transmission and computational capacity in neurons, significantly affecting the function and efficiency of neural networks. However, the temperature dependence of VO2-based artificial neuron, which is one of the highly promising artificial neurons, has been hardly reported to date. Here, high-performance VO2 devices with NDR features are prepared by rapid annealing and electroforming processes. We constructed VO2-based artificial neurons with output properties similar to those of biological neurons on the basis of the Pearson–Anson oscillation circuit. The temperature-dependent behavior of VO2 neurons was fully investigated. Increasing temperature leads to a decrease in the peak-to-peak value of the output spikes of VO2 neurons. The spike period of VO2 neurons remains relatively stable near room temperature, but it decreases as the temperature reaches above 26 °C. These temperature-dependent features of VO2 neurons are similar to the ones of biological neurons, suggesting a natural advantage of VO2-based artificial neurons in mimicking biological neural activity. These findings contribute toward comprehending and regulating the temperature-dependent behavior of artificial neurons based on Mott memristor.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"34 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0231840","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature serves as a pivotal factor influencing information transmission and computational capacity in neurons, significantly affecting the function and efficiency of neural networks. However, the temperature dependence of VO2-based artificial neuron, which is one of the highly promising artificial neurons, has been hardly reported to date. Here, high-performance VO2 devices with NDR features are prepared by rapid annealing and electroforming processes. We constructed VO2-based artificial neurons with output properties similar to those of biological neurons on the basis of the Pearson–Anson oscillation circuit. The temperature-dependent behavior of VO2 neurons was fully investigated. Increasing temperature leads to a decrease in the peak-to-peak value of the output spikes of VO2 neurons. The spike period of VO2 neurons remains relatively stable near room temperature, but it decreases as the temperature reaches above 26 °C. These temperature-dependent features of VO2 neurons are similar to the ones of biological neurons, suggesting a natural advantage of VO2-based artificial neurons in mimicking biological neural activity. These findings contribute toward comprehending and regulating the temperature-dependent behavior of artificial neurons based on Mott memristor.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.