Coherence of NV defects in isotopically enriched 6H-28SiC at ambient conditions

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-11-13 DOI:10.1063/5.0222098
Fadis Murzakhanov, Georgy Mamin, Margarita Sadovnikova, Evgeniy Mokhov, Sergey Nagalyuk, Marat Gafurov, Victor Soltamov
{"title":"Coherence of NV defects in isotopically enriched 6H-28SiC at ambient conditions","authors":"Fadis Murzakhanov, Georgy Mamin, Margarita Sadovnikova, Evgeniy Mokhov, Sergey Nagalyuk, Marat Gafurov, Victor Soltamov","doi":"10.1063/5.0222098","DOIUrl":null,"url":null,"abstract":"The unique spin-optical properties of NV defects in SiC, coupled with silicon carbide's advanced technology compared to diamond, make them a promising candidate for quantum technology applications. In this study, using photoinduced pulse ESR at 94 GHz (3.4 T), we reveal the room temperature spin coherence of NV defects in 6H-28SiC, purified to reduce 29Si concentration to ≈1%, four times below its natural level. We demonstrate room temperature (300 K) Hahn-echo coherence time T2 = 23.6 μs, spin–lattice relaxation time T1 = 0.1 ms, and coherent control over optically polarized NV spin states through Rabi nutation experiments. We reveal long inhomogeneous dephasing time T2* = 1.5 μs, which is about five times greater than that measured for NV defects in SiC with natural isotopic content. Our observations highlight again the potential of NV defects in 6H-28SiC, which exhibit near-infrared optical excitation and emission properties compatible with O-band fiber optics, as promising candidates for applications in quantum sensing, communication, and computation.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"152 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222098","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The unique spin-optical properties of NV defects in SiC, coupled with silicon carbide's advanced technology compared to diamond, make them a promising candidate for quantum technology applications. In this study, using photoinduced pulse ESR at 94 GHz (3.4 T), we reveal the room temperature spin coherence of NV defects in 6H-28SiC, purified to reduce 29Si concentration to ≈1%, four times below its natural level. We demonstrate room temperature (300 K) Hahn-echo coherence time T2 = 23.6 μs, spin–lattice relaxation time T1 = 0.1 ms, and coherent control over optically polarized NV spin states through Rabi nutation experiments. We reveal long inhomogeneous dephasing time T2* = 1.5 μs, which is about five times greater than that measured for NV defects in SiC with natural isotopic content. Our observations highlight again the potential of NV defects in 6H-28SiC, which exhibit near-infrared optical excitation and emission properties compatible with O-band fiber optics, as promising candidates for applications in quantum sensing, communication, and computation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境条件下同位素富集的 6H-28SiC 中 NV 缺陷的相干性
碳化硅中的 NV 缺陷具有独特的自旋光学特性,加上碳化硅的技术比金刚石先进,使其成为量子技术应用的理想候选材料。在这项研究中,我们利用 94 GHz (3.4 T) 的光诱导脉冲 ESR,揭示了 6H-28SiC 中 NV 缺陷的室温自旋相干性,纯化后的 6H-28SiC 中 29Si 的浓度降低到≈1%,比其天然水平低四倍。我们展示了室温(300 K)哈恩回波相干时间 T2 = 23.6 μs,自旋晶格弛豫时间 T1 = 0.1 ms,以及通过拉比突变实验对光极化 NV 自旋态的相干控制。我们发现了较长的不均匀去相时间 T2* = 1.5 μs,这比天然同位素含量的碳化硅中 NV 缺陷的测量值大五倍左右。我们的观察结果再次凸显了 6H-28SiC 中 NV 缺陷的潜力,它表现出与 O 波段光纤兼容的近红外光激发和发射特性,是量子传感、通信和计算应用的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Temperature-dependent behavior of VO2-based artificial neurons 24-mA/mm metal–semiconductor field-effect transistor based on Ge-doped α-Ga2O3 grown by mist chemical vapor deposition Meta-optics triplet for zoom imaging at mid-wave infrared Acoustic forces near elastic substrate Convolutional neural network model-based prediction of human muscle activity by analyzing urine in body fluid using Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1