Highly anisotropic superconducting gap near the nematic quantum critical point of FeSe1−xSx

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2024-11-13 DOI:10.1038/s41567-024-02683-x
Pranab Kumar Nag, Kirsty Scott, Vanuildo S. de Carvalho, Journey K. Byland, Xinze Yang, Morgan Walker, Aaron G. Greenberg, Peter Klavins, Eduardo Miranda, Adrian Gozar, Valentin Taufour, Rafael M. Fernandes, Eduardo H. da Silva Neto
{"title":"Highly anisotropic superconducting gap near the nematic quantum critical point of FeSe1−xSx","authors":"Pranab Kumar Nag, Kirsty Scott, Vanuildo S. de Carvalho, Journey K. Byland, Xinze Yang, Morgan Walker, Aaron G. Greenberg, Peter Klavins, Eduardo Miranda, Adrian Gozar, Valentin Taufour, Rafael M. Fernandes, Eduardo H. da Silva Neto","doi":"10.1038/s41567-024-02683-x","DOIUrl":null,"url":null,"abstract":"<p>Nematic phases, in which electrons in a solid spontaneously break rotational symmetry while preserving translational symmetry, exist in several families of unconventional superconductors. Superconductivity mediated by nematic fluctuations is well established theoretically, but it has yet to be unambiguously identified experimentally. One major challenge is that nematicity is often intertwined with other degrees of freedom, such as magnetism and charge order. The FeSe<sub>1−<i>x</i></sub>S<sub><i>x</i></sub> family of superconductors provides an opportunity to explore this concept, as it features an isolated nematic phase that can be suppressed by sulfur substitution at a quantum critical point where the nematic fluctuations are the largest. Here we determine the momentum structure of the superconducting gap near the centre of the Brillouin zone in FeSe<sub>0.81</sub>S<sub>0.19</sub>—close to the quantum critical point—and find that it is anisotropic and nearly nodal. The gap minima occur in a direction that is rotated 45° with respect to the Fe–Fe direction, unlike the usual isotropic gaps due to spin-mediated pairing in other tetragonal Fe-based superconductors. Instead, we find that the gap structure agrees with theoretical predictions for superconductivity mediated by nematic fluctuations, indicating a change in the pairing mechanism across the phase diagram of FeSe<sub>1−<i>x</i></sub>S<sub><i>x</i></sub>.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"3 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02683-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nematic phases, in which electrons in a solid spontaneously break rotational symmetry while preserving translational symmetry, exist in several families of unconventional superconductors. Superconductivity mediated by nematic fluctuations is well established theoretically, but it has yet to be unambiguously identified experimentally. One major challenge is that nematicity is often intertwined with other degrees of freedom, such as magnetism and charge order. The FeSe1−xSx family of superconductors provides an opportunity to explore this concept, as it features an isolated nematic phase that can be suppressed by sulfur substitution at a quantum critical point where the nematic fluctuations are the largest. Here we determine the momentum structure of the superconducting gap near the centre of the Brillouin zone in FeSe0.81S0.19—close to the quantum critical point—and find that it is anisotropic and nearly nodal. The gap minima occur in a direction that is rotated 45° with respect to the Fe–Fe direction, unlike the usual isotropic gaps due to spin-mediated pairing in other tetragonal Fe-based superconductors. Instead, we find that the gap structure agrees with theoretical predictions for superconductivity mediated by nematic fluctuations, indicating a change in the pairing mechanism across the phase diagram of FeSe1−xSx.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FeSe1-xSx 向列量子临界点附近的高各向异性超导间隙
向列相是指固体中的电子在保持平移对称性的同时自发地打破旋转对称性,存在于多个非常规超导体系列中。由向列波动介导的超导电性在理论上已经得到了很好的证实,但在实验中仍有待明确确定。一个主要挑战是向列性往往与其他自由度(如磁性和电荷秩序)交织在一起。FeSe1-xSx 系列超导体为探索这一概念提供了一个机会,因为它具有孤立的向列相,可以通过在向列波动最大的量子临界点进行硫替代来抑制向列相。在这里,我们确定了 FeSe0.81S0.19 中布里渊区中心附近--接近量子临界点--超导间隙的动量结构,并发现它是各向异性的,几乎是结点结构。间隙最小值出现在一个相对于铁-铁方向旋转 45° 的方向上,这与其他四方铁基超导体中由于自旋介导配对而产生的通常各向同性间隙不同。相反,我们发现间隙结构与理论预测的由向列波动介导的超导性一致,这表明 FeSe1-xSx 相图中的配对机制发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves Universal dynamics exposed by interaction quenches Nematic fluctuations shape Cooper pairs Islands identified Highly anisotropic superconducting gap near the nematic quantum critical point of FeSe1−xSx
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1