{"title":"Activating hepatobiliary water channels for gallstone prevention in complicated gallstone disease","authors":"Jan G. Hengstler, Nachiket Vartak","doi":"10.1016/j.jhep.2024.11.006","DOIUrl":null,"url":null,"abstract":"<h2>Section snippets</h2><section><section><h2>Conflict of interest statement</h2>The authors declare no conflict of interest.</section></section><section><section><h2>Uncited reference</h2>[17]; [18]; [19]; [17]; [18]; [19].</section></section><section><section><h2>Authors' contributions</h2>JGH and NV developed the ideas presented and wrote the manuscript.</section></section><section><section><h2>Financial support</h2>No particulars to report</section></section>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"35 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jhep.2024.11.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Section snippets
Conflict of interest statement
The authors declare no conflict of interest.
Uncited reference
[17]; [18]; [19]; [17]; [18]; [19].
Authors' contributions
JGH and NV developed the ideas presented and wrote the manuscript.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.