Engineering Exopolysaccharide Biosynthesis of Shewanella oneidensis to Promote Electroactive Biofilm Formation for Liquor Wastewater Treatment.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-11-18 DOI:10.1021/acssynbio.4c00417
Zixuan You, Huan Yu, Baocai Zhang, Qijing Liu, Bo Xiong, Chao Li, Chunxiao Qiao, Longhai Dai, Jianxun Li, Wenwei Li, Guosheng Xin, Zhanying Liu, Feng Li, Hao Song
{"title":"Engineering Exopolysaccharide Biosynthesis of <i>Shewanella oneidensis</i> to Promote Electroactive Biofilm Formation for Liquor Wastewater Treatment.","authors":"Zixuan You, Huan Yu, Baocai Zhang, Qijing Liu, Bo Xiong, Chao Li, Chunxiao Qiao, Longhai Dai, Jianxun Li, Wenwei Li, Guosheng Xin, Zhanying Liu, Feng Li, Hao Song","doi":"10.1021/acssynbio.4c00417","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial electrochemical systems (MESs), as a green and sustainable technology, can decompose organics in wastewater to recover bioelectricity. Electroactive biofilms, a microbial community structure encased in a self-produced matrix, play a decisive role in determining the efficiency of MESs. However, as an essential component of the biofilm matrix, the role of exopolysaccharides in electroactive biofilm formation and their influence on extracellular electron transfer (EET) have been rarely studied. Herein, to explore the effects of exopolysaccharides on biofilm formation and EET rate, we first inhibited the key genes responsible for exopolysaccharide biosynthesis (namely, <i>so_3171</i>, <i>so_3172</i>, <i>so_3177</i>, and <i>so_3178</i>) by using antisense RNA in <i>Shewanella oneidensis</i> MR-1. Then, to explore the underlying mechanisms why inhibition of exopolysaccharide synthesis could enhance biofilm formation and promote the EET rate, we characterized cell physiology and electrophysiology. The results showed inhibition of exopolysaccharide biosynthesis not only altered cell surface hydrophobicity and promoted intercellular adhesion and aggregation, but also increased biosynthesis of <i>c</i>-type cytochromes and decreased interfacial resistance, thus promoting electroactive biofilm formation and improving the EET rate of <i>S. oneidensis</i>. Lastly, to evaluate and intensify the capability of exopolysaccharide-reduced strains in harvesting electrical energy from actual liquor wastewater, engineered strain Δ3171-as3177 was further constructed to treat an actual thin stillage. The results showed that the output power density reached 380.98 mW m<sup>-2</sup>, 11.1-fold higher than that of WT strain, which exhibited excellent capability of harvesting electricity from actual liquor wastewater. This study sheds light on the underlying mechanism of how inhibition of exopolysaccharides impacts electroactive biofilm formation and EET rate, which suggested that regulating exopolysaccharide biosynthesis is a promising avenue for increasing the EET rate.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00417","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial electrochemical systems (MESs), as a green and sustainable technology, can decompose organics in wastewater to recover bioelectricity. Electroactive biofilms, a microbial community structure encased in a self-produced matrix, play a decisive role in determining the efficiency of MESs. However, as an essential component of the biofilm matrix, the role of exopolysaccharides in electroactive biofilm formation and their influence on extracellular electron transfer (EET) have been rarely studied. Herein, to explore the effects of exopolysaccharides on biofilm formation and EET rate, we first inhibited the key genes responsible for exopolysaccharide biosynthesis (namely, so_3171, so_3172, so_3177, and so_3178) by using antisense RNA in Shewanella oneidensis MR-1. Then, to explore the underlying mechanisms why inhibition of exopolysaccharide synthesis could enhance biofilm formation and promote the EET rate, we characterized cell physiology and electrophysiology. The results showed inhibition of exopolysaccharide biosynthesis not only altered cell surface hydrophobicity and promoted intercellular adhesion and aggregation, but also increased biosynthesis of c-type cytochromes and decreased interfacial resistance, thus promoting electroactive biofilm formation and improving the EET rate of S. oneidensis. Lastly, to evaluate and intensify the capability of exopolysaccharide-reduced strains in harvesting electrical energy from actual liquor wastewater, engineered strain Δ3171-as3177 was further constructed to treat an actual thin stillage. The results showed that the output power density reached 380.98 mW m-2, 11.1-fold higher than that of WT strain, which exhibited excellent capability of harvesting electricity from actual liquor wastewater. This study sheds light on the underlying mechanism of how inhibition of exopolysaccharides impacts electroactive biofilm formation and EET rate, which suggested that regulating exopolysaccharide biosynthesis is a promising avenue for increasing the EET rate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改造一龄雪旺氏菌的多糖生物合成,促进电活性生物膜的形成,用于酒类废水处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Engineering an αCD206-synNotch Receptor: Insights into the Development of Novel Synthetic Receptors. Engineering Exopolysaccharide Biosynthesis of Shewanella oneidensis to Promote Electroactive Biofilm Formation for Liquor Wastewater Treatment. Issue Publication Information Issue Editorial Masthead Genetic study of intrahepatic cholestasis of pregnancy in Chinese women unveils East Asian etiology linked to historic HBV epidemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1