Spectrally Programmable Optical Frequency Comb Generation

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2024-11-12 DOI:10.1021/acsphotonics.4c01422
Hudi Liu, Yuhan Du, Xingfeng Li, Xingchen Ji, Yikai Su
{"title":"Spectrally Programmable Optical Frequency Comb Generation","authors":"Hudi Liu, Yuhan Du, Xingfeng Li, Xingchen Ji, Yikai Su","doi":"10.1021/acsphotonics.4c01422","DOIUrl":null,"url":null,"abstract":"Optical frequency combs (OFCs) are critical components in several fields, such as optical communications, microwave photonics, ranging, atomic clocks, and photonic neural networks, which meet diverse application requirements through precise spectral manipulations. Conventional OFC spectral manipulation methods use Fourier transform pulse shapers for postprocessing. However, they face constraints in terms of spectral resolution and operational bandwidth. In this study, a deep-learning-assisted approach is introduced to enable efficient spectral shaping of OFCs through nonlinear broadening, achieving broader spectral shaping by controlling a narrower-bandwidth seed comb. By training a convolutional neural network, we model complex nonlinear interactions within a highly nonlinear fiber to predict and control the spectral output of a broadened comb. Experimental validation confirms the system’s ability to generate, with high precision, diverse spectral shapes such as Gaussian, parabolic, Cauchy, Laplace, and Gaussian mixture models within seconds, with a relative error of 10<sup>–1</sup>–10<sup>–2</sup>. Our study presents a flexible, rapid, and efficient method for the spectral shaping of OFCs using deep learning, marking a substantial advancement in the programmability and utility of OFC technologies.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01422","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical frequency combs (OFCs) are critical components in several fields, such as optical communications, microwave photonics, ranging, atomic clocks, and photonic neural networks, which meet diverse application requirements through precise spectral manipulations. Conventional OFC spectral manipulation methods use Fourier transform pulse shapers for postprocessing. However, they face constraints in terms of spectral resolution and operational bandwidth. In this study, a deep-learning-assisted approach is introduced to enable efficient spectral shaping of OFCs through nonlinear broadening, achieving broader spectral shaping by controlling a narrower-bandwidth seed comb. By training a convolutional neural network, we model complex nonlinear interactions within a highly nonlinear fiber to predict and control the spectral output of a broadened comb. Experimental validation confirms the system’s ability to generate, with high precision, diverse spectral shapes such as Gaussian, parabolic, Cauchy, Laplace, and Gaussian mixture models within seconds, with a relative error of 10–1–10–2. Our study presents a flexible, rapid, and efficient method for the spectral shaping of OFCs using deep learning, marking a substantial advancement in the programmability and utility of OFC technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光谱可编程光频梳生成器
光频梳(OFC)是光通信、微波光子学、测距、原子钟和光子神经网络等多个领域的关键元件,通过精确的光谱操作满足各种应用要求。传统的 OFC 光谱处理方法使用傅立叶变换脉冲整形器进行后处理。然而,这些方法在光谱分辨率和操作带宽方面受到限制。在本研究中,引入了一种深度学习辅助方法,通过非线性拓宽实现 OFC 的高效光谱整形,通过控制带宽较窄的种子梳实现更宽的光谱整形。通过训练卷积神经网络,我们对高度非线性光纤内复杂的非线性相互作用进行建模,以预测和控制加宽梳的光谱输出。实验验证证实,该系统能够在数秒内高精度生成各种光谱形状,如高斯、抛物线、考奇、拉普拉斯和高斯混合模型,相对误差为 10-1-10-2。我们的研究提出了一种灵活、快速、高效的方法,利用深度学习对 OFC 进行光谱整形,标志着 OFC 技术在可编程性和实用性方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Spatiotemporal Symmetries and Energy-Momentum Conservation in Uniform Spacetime Metamaterials Dynamically Switchable Mid-Infrared Perfect Absorber Based on Grating-Assisted Graphene Plasmon Excitation Spin-Dependent Phenomena of Meta-optics Spectrally Programmable Optical Frequency Comb Generation Reduction in the Number of Quantum Wells Alleviates the Sidewall Effect in AlGaInP-Based Red Micro-LEDs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1