Dengke Wang , Danyang Zhao , Le Chang , Yi Zhang , Weiyue Wang , Wenming Zhang , Qiancheng Zhu
{"title":"Interface engineering of electron-ion dual transmission channels for ultra-long lifespan quasi-solid zinc-ion batteries","authors":"Dengke Wang , Danyang Zhao , Le Chang , Yi Zhang , Weiyue Wang , Wenming Zhang , Qiancheng Zhu","doi":"10.1016/j.ensm.2024.103903","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel electrolytes have emerged as effective strategies to prolong the lifespan of aqueous zinc ion batteries (AZIBs). However, dendrites and side reactions are still inescapable due to the residual active water and chaotic migration of Zn<sup>2+</sup>. Herein, a super stable Zn anode is realized through the synergistic effect of interfacial electron-ion dual transmission channels (EIDC) and an intermediate sodium alginate (SA) gel. Specifically, the SA gel can adjust the solvation structure of Zn<sup>2+</sup> and weaken the strong bonding of Zn<sup>2+</sup> and H<sub>2</sub>O molecules. The EIDC polymer layer (PEDOT:PSS) is engineered on the SA hydrogel surfaces, in which PSS chains can offer uniform ion transmission channels via the electrostatic interaction between <img>SO<sub>3</sub><sup>–</sup> groups and Zn<sup>2+</sup>. While another PEDOT chains can provide electron conducting channels through the conjugated π-<img>π bonds to accelerate charge exchange. Benefiting from the synergistic effect of EIDC polymer layer and SA gel, the as-prepared SA/EIDC gel electrolyte achieves a high ionic conductivity of 41 mS cm<sup>–1</sup>. The Zn//Zn symmetric batteries exhibit a super-long lifespan of 6750 h at 1 mA cm<sup>–2</sup> and 1 mAh cm<sup>–2</sup> (>9 months), and cycling life of MnO<sub>2</sub>-Zn full battery surpasses 4000 cycles. This work presents a new perspective on designing hydrogel electrolytes towards ultra-long lifespan ZIBs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"74 ","pages":"Article 103903"},"PeriodicalIF":18.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724007293","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogel electrolytes have emerged as effective strategies to prolong the lifespan of aqueous zinc ion batteries (AZIBs). However, dendrites and side reactions are still inescapable due to the residual active water and chaotic migration of Zn2+. Herein, a super stable Zn anode is realized through the synergistic effect of interfacial electron-ion dual transmission channels (EIDC) and an intermediate sodium alginate (SA) gel. Specifically, the SA gel can adjust the solvation structure of Zn2+ and weaken the strong bonding of Zn2+ and H2O molecules. The EIDC polymer layer (PEDOT:PSS) is engineered on the SA hydrogel surfaces, in which PSS chains can offer uniform ion transmission channels via the electrostatic interaction between SO3– groups and Zn2+. While another PEDOT chains can provide electron conducting channels through the conjugated π-π bonds to accelerate charge exchange. Benefiting from the synergistic effect of EIDC polymer layer and SA gel, the as-prepared SA/EIDC gel electrolyte achieves a high ionic conductivity of 41 mS cm–1. The Zn//Zn symmetric batteries exhibit a super-long lifespan of 6750 h at 1 mA cm–2 and 1 mAh cm–2 (>9 months), and cycling life of MnO2-Zn full battery surpasses 4000 cycles. This work presents a new perspective on designing hydrogel electrolytes towards ultra-long lifespan ZIBs.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.