{"title":"Enhancing Structural Flexibility in P2-type Ni-Mn-based Na-layered Cathodes for High Power-Capability and Fast Charging/Discharging Performance","authors":"Bonyoung Ku, Jinho Ahn, Hoseok Lee, Hobin Ahn, Jihoe Lee, Hyunji Kweon, Myungeun Choi, Hun-Gi Jung, Kyuwook Ihm, Eunji Sim, Jung-Keun Yoo, Jongsoon Kim","doi":"10.1016/j.ensm.2024.103930","DOIUrl":null,"url":null,"abstract":"P2-type Ni-Mn-based Na-layered cathodes suffer from severely large structural changes, such as the direct P2-O2 phase transition, occurring during charging to the high voltage region, resulting in the poor power-capability with large overpotential, as well as the diminished cycle-performance. In this study, through a combination of first-principles calculations and various experiments, we demonstrate that enhanced structural flexibility through Co-Al co-substitution provides smooth and continuous structural changes in the P2-type Ni-Mn-based Na-layered cathode without the direct phase transition, enabling the highly improved electrochemical performances. P2-type Na<sub>0.67</sub>[Ni<sub>0.35</sub>Co<sub>0.1</sub>Mn<sub>0.5</sub>Al<sub>0.05</sub>]O<sub>2</sub> delivers a high discharge capacity of approximately ∼156.31 mAh g<sup>−1</sup> and an energy density of ∼551.71 Wh kg<sup>−1</sup> at 10 mA g<sup>−1</sup>, outperforming P2-type Na<sub>0.67</sub>[Ni<sub>0.35</sub>Mn<sub>0.65</sub>]O<sub>2</sub>. These performance differences are especially pronounced during fast charging/discharging process, highlighting the enhanced power-capability and Na<sup>+</sup> diffusion kinetics due to improved structural flexibility. Moreover, smooth and continuous structural changes enable improved cycle performance, including reduced voltage decay during prolonged cycling, for P2-type Na<sub>0.67</sub>[Ni<sub>0.35</sub>Co<sub>0.1</sub>Mn<sub>0.5</sub>Al<sub>0.05</sub>]O<sub>2</sub>. These results highlight that introducing structural flexibility is one of the most efficient ways to enhance power-capability and fast-charging/discharging performance in P2-type Ni-Mn-based Na-layered cathodes, while also improving cyclability.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"78 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103930","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
P2-type Ni-Mn-based Na-layered cathodes suffer from severely large structural changes, such as the direct P2-O2 phase transition, occurring during charging to the high voltage region, resulting in the poor power-capability with large overpotential, as well as the diminished cycle-performance. In this study, through a combination of first-principles calculations and various experiments, we demonstrate that enhanced structural flexibility through Co-Al co-substitution provides smooth and continuous structural changes in the P2-type Ni-Mn-based Na-layered cathode without the direct phase transition, enabling the highly improved electrochemical performances. P2-type Na0.67[Ni0.35Co0.1Mn0.5Al0.05]O2 delivers a high discharge capacity of approximately ∼156.31 mAh g−1 and an energy density of ∼551.71 Wh kg−1 at 10 mA g−1, outperforming P2-type Na0.67[Ni0.35Mn0.65]O2. These performance differences are especially pronounced during fast charging/discharging process, highlighting the enhanced power-capability and Na+ diffusion kinetics due to improved structural flexibility. Moreover, smooth and continuous structural changes enable improved cycle performance, including reduced voltage decay during prolonged cycling, for P2-type Na0.67[Ni0.35Co0.1Mn0.5Al0.05]O2. These results highlight that introducing structural flexibility is one of the most efficient ways to enhance power-capability and fast-charging/discharging performance in P2-type Ni-Mn-based Na-layered cathodes, while also improving cyclability.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.