Koray Malcı, Ivy S Li, Natasha Kisseroudis, Tom Ellis
{"title":"Modulating Microbial Materials - Engineering Bacterial Cellulose with Synthetic Biology.","authors":"Koray Malcı, Ivy S Li, Natasha Kisseroudis, Tom Ellis","doi":"10.1021/acssynbio.4c00615","DOIUrl":null,"url":null,"abstract":"<p><p>The fusion of synthetic biology and materials science offers exciting opportunities to produce sustainable materials that can perform programmed biological functions such as sensing and responding or enhance material properties through biological means. Bacterial cellulose (BC) is a unique material for this challenge due to its high-performance material properties and ease of production from culturable microbes. Research in the past decade has focused on expanding the benefits and applications of BC through many approaches. Here, we explore how the current landscape of BC-based biomaterials is being shaped by progress in synthetic biology. As well as discussing how it can aid production of more BC and BC with tailored material properties, we place special emphasis on the potential of using BC for engineered living materials (ELMs); materials of a biological nature designed to carry out specific tasks. We also explore the role of 3D bioprinting being used for BC-based ELMs and highlight specific opportunities that this can bring. As synthetic biology continues to advance, it will drive further innovation in BC-based materials and ELMs, enabling many new applications that can help address problems in the modern world, in both biomedicine and many other application fields.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00615","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The fusion of synthetic biology and materials science offers exciting opportunities to produce sustainable materials that can perform programmed biological functions such as sensing and responding or enhance material properties through biological means. Bacterial cellulose (BC) is a unique material for this challenge due to its high-performance material properties and ease of production from culturable microbes. Research in the past decade has focused on expanding the benefits and applications of BC through many approaches. Here, we explore how the current landscape of BC-based biomaterials is being shaped by progress in synthetic biology. As well as discussing how it can aid production of more BC and BC with tailored material properties, we place special emphasis on the potential of using BC for engineered living materials (ELMs); materials of a biological nature designed to carry out specific tasks. We also explore the role of 3D bioprinting being used for BC-based ELMs and highlight specific opportunities that this can bring. As synthetic biology continues to advance, it will drive further innovation in BC-based materials and ELMs, enabling many new applications that can help address problems in the modern world, in both biomedicine and many other application fields.
合成生物学与材料科学的融合为生产可持续材料提供了令人兴奋的机会,这些材料可以执行编程生物功能,如传感和响应,或通过生物手段增强材料特性。细菌纤维素(BC)具有高性能的材料特性,而且易于从可培养的微生物中生产出来,因此是应对这一挑战的独特材料。过去十年的研究重点是通过多种方法扩大 BC 的优势和应用。在此,我们将探讨合成生物学的进步如何塑造当前基于萃取物的生物材料的面貌。除了讨论合成生物学如何帮助生产更多的生物降解材料和具有定制材料特性的生物降解材料外,我们还特别强调了将生物降解材料用于工程活体材料(ELM)的潜力;这些材料具有生物性质,旨在执行特定任务。我们还探讨了将三维生物打印技术用于基于生物碱的 ELMs 的作用,并强调了这一技术可能带来的具体机遇。随着合成生物学的不断进步,它将推动基于生物碱的材料和 ELM 的进一步创新,实现许多新的应用,帮助解决现代世界中生物医学和许多其他应用领域的问题。
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.