Graph domain adaptation-based framework for gene expression enhancement and cell type identification in large-scale spatially resolved transcriptomics.
{"title":"Graph domain adaptation-based framework for gene expression enhancement and cell type identification in large-scale spatially resolved transcriptomics.","authors":"Rongbo Shen, Meiling Cheng, Wencang Wang, Qi Fan, Huan Yan, Jiayue Wen, Zhiyuan Yuan, Jianhua Yao, Yixue Li, Jiao Yuan","doi":"10.1093/bib/bbae576","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) technologies facilitate gene expression profiling with spatial resolution in a naïve state. Nevertheless, current SRT technologies exhibit limitations, manifesting as either low transcript detection sensitivity or restricted gene throughput. These constraints result in diminished precision and coverage in gene measurement. In response, we introduce SpaGDA, a sophisticated deep learning-based graph domain adaptation framework for both scenarios of gene expression imputation and cell type identification in spatially resolved transcriptomics data by impartially transferring knowledge from reference scRNA-seq data. Systematic benchmarking analyses across several SRT datasets generated from different technologies have demonstrated SpaGDA's superior effectiveness compared to state-of-the-art methods in both scenarios. Further applied to three SRT datasets of different biological contexts, SpaGDA not only better recovers the well-established knowledge sourced from public atlases and existing scientific literature but also yields a more informative spatial expression pattern of genes. Together, these results demonstrate that SpaGDA can be used to overcome the challenges of current SRT data and provide more accurate insights into biological processes or disease development. The SpaGDA is available in https://github.com/shenrb/SpaGDA.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541786/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae576","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Spatially resolved transcriptomics (SRT) technologies facilitate gene expression profiling with spatial resolution in a naïve state. Nevertheless, current SRT technologies exhibit limitations, manifesting as either low transcript detection sensitivity or restricted gene throughput. These constraints result in diminished precision and coverage in gene measurement. In response, we introduce SpaGDA, a sophisticated deep learning-based graph domain adaptation framework for both scenarios of gene expression imputation and cell type identification in spatially resolved transcriptomics data by impartially transferring knowledge from reference scRNA-seq data. Systematic benchmarking analyses across several SRT datasets generated from different technologies have demonstrated SpaGDA's superior effectiveness compared to state-of-the-art methods in both scenarios. Further applied to three SRT datasets of different biological contexts, SpaGDA not only better recovers the well-established knowledge sourced from public atlases and existing scientific literature but also yields a more informative spatial expression pattern of genes. Together, these results demonstrate that SpaGDA can be used to overcome the challenges of current SRT data and provide more accurate insights into biological processes or disease development. The SpaGDA is available in https://github.com/shenrb/SpaGDA.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.