Identification of groundwater nitrate sources and its human health risks in a typical agriculture-dominated watershed, North China.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-11-07 DOI:10.1007/s10653-024-02276-w
Shou Wang, Jing Chen, Fei Liu, Dan Chen, Shuxuan Zhang, Yanjie Bai, Xiaoyan Zhang, Senqi Kang
{"title":"Identification of groundwater nitrate sources and its human health risks in a typical agriculture-dominated watershed, North China.","authors":"Shou Wang, Jing Chen, Fei Liu, Dan Chen, Shuxuan Zhang, Yanjie Bai, Xiaoyan Zhang, Senqi Kang","doi":"10.1007/s10653-024-02276-w","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying nitrate sources and migratory pathways is crucial for controlling groundwater nitrate pollution in agricultural watersheds. This study collected 35 shallow groundwater samples in the Nansi Lake Basin (NLB) to identify groundwater nitrate sources and potential health risks. Results showed that NO<sub>3</sub><sup>-</sup> concentration in 62.9% of groundwater samples exceeded the drinking water standard (50 mg/L). Hierarchical cluster analysis (HCA) was used to classify the sampling points into three groups based on hydrochemical and isotopic data. Groups A and C were situated in the eastern recharge and discharge regions of Nansi Lake, while Group B was located in the Yellow River floodplain west of the lake. Hydrochemical data and nitrate stable isotopes (δ<sup>15</sup>N-NO<sub>3</sub><sup>-</sup> and δ<sup>18</sup>O-NO<sub>3</sub><sup>-</sup>) indicated that elevated NO<sub>3</sub><sup>-</sup> primarily originated from soil organic nitrogen (SON) in Group A, while manure and sewage (M&S) were the primary sources in Groups B and C samples. Microbial nitrification was identified as the primary nitrogen transformation process across all groups. The source apportionment results indicated that SON contributed approximately 40.1% in Group A, while M&S contributed about 53.9% and 81.2% in Groups B and C, respectively. The Human Health Risk Assessment (HHRA) model indicated significant non-carcinogenic risks for residents east of Nansi Lake, primarily through the oral pathway, with NO<sub>3</sub><sup>-</sup> concentration identified as the most influential factor by sensitivity analysis. These findings provide new perspectives on identifying and handling groundwater nitrogen pollution in agriculture-dominated NLB and similar basins that require enhanced nitrogen contamination management.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"495"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02276-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying nitrate sources and migratory pathways is crucial for controlling groundwater nitrate pollution in agricultural watersheds. This study collected 35 shallow groundwater samples in the Nansi Lake Basin (NLB) to identify groundwater nitrate sources and potential health risks. Results showed that NO3- concentration in 62.9% of groundwater samples exceeded the drinking water standard (50 mg/L). Hierarchical cluster analysis (HCA) was used to classify the sampling points into three groups based on hydrochemical and isotopic data. Groups A and C were situated in the eastern recharge and discharge regions of Nansi Lake, while Group B was located in the Yellow River floodplain west of the lake. Hydrochemical data and nitrate stable isotopes (δ15N-NO3- and δ18O-NO3-) indicated that elevated NO3- primarily originated from soil organic nitrogen (SON) in Group A, while manure and sewage (M&S) were the primary sources in Groups B and C samples. Microbial nitrification was identified as the primary nitrogen transformation process across all groups. The source apportionment results indicated that SON contributed approximately 40.1% in Group A, while M&S contributed about 53.9% and 81.2% in Groups B and C, respectively. The Human Health Risk Assessment (HHRA) model indicated significant non-carcinogenic risks for residents east of Nansi Lake, primarily through the oral pathway, with NO3- concentration identified as the most influential factor by sensitivity analysis. These findings provide new perspectives on identifying and handling groundwater nitrogen pollution in agriculture-dominated NLB and similar basins that require enhanced nitrogen contamination management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
华北地区典型农业流域地下水硝酸盐来源及其对人类健康的危害。
确定硝酸盐的来源和迁移途径对于控制农业流域的地下水硝酸盐污染至关重要。本研究在南四湖流域采集了 35 个浅层地下水样本,以确定地下水硝酸盐的来源和潜在的健康风险。结果显示,62.9% 的地下水样本中 NO3- 浓度超过饮用水标准(50 mg/L)。根据水化学和同位素数据,采用层次聚类分析法(HCA)将采样点分为三组。A 组和 C 组位于南四湖东部补给区和排泄区,B 组位于南四湖西部黄河冲积平原。水化学数据和硝酸盐稳定同位素(δ15N-NO3- 和 δ18O-NO3-)表明,A 组样品中升高的 NO3-主要来自土壤有机氮(SON),而 B 组和 C 组样品中的主要来源是粪便和污水(M&S)。微生物硝化被认为是所有组别中主要的氮转化过程。来源分配结果表明,在 A 组中,SON 的贡献率约为 40.1%,而在 B 组和 C 组中,M&S 的贡献率分别约为 53.9% 和 81.2%。人类健康风险评估(HHRA)模型表明,南四湖以东居民主要通过口腔途径面临巨大的非致癌风险,敏感性分析确定 NO3- 浓度是影响最大的因素。这些发现为识别和处理以农业为主的北大港及类似流域的地下水氮污染提供了新的视角,这些流域需要加强氮污染管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Distribution, assessment, and causality analysis of soil heavy metals pollution in complex contaminated sites: a case study of a chemical plant. Hydrochemical characteristics, cross-layer pollution and environmental health risk of groundwater system in coal mine area: a case study of Jiangzhuang coal mine. Environmental microplastic and phthalate esters co-contamination, interrelationships, co-toxicity and mechanisms. A review. Cultivable bacteria contribute to the removal of diclofenac and naproxen mix in a constructed wetland with Typha latifolia. Mercury in saliva, milk, and hair of nursing mothers in southeastern Iranian mothers: levels, distribution and risk assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1