BrainNet: an automated approach for brain stress prediction utilizing electrodermal activity signal with XLNet model.

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in Computational Neuroscience Pub Date : 2024-10-24 eCollection Date: 2024-01-01 DOI:10.3389/fncom.2024.1482994
Liao Xuanzhi, Abeer Hakeem, Linda Mohaisen, Muhammad Umer, Muhammad Attique Khan, Shrooq Alsenan, Shtwai Alsubai, Nisreen Innab
{"title":"BrainNet: an automated approach for brain stress prediction utilizing electrodermal activity signal with XLNet model.","authors":"Liao Xuanzhi, Abeer Hakeem, Linda Mohaisen, Muhammad Umer, Muhammad Attique Khan, Shrooq Alsenan, Shtwai Alsubai, Nisreen Innab","doi":"10.3389/fncom.2024.1482994","DOIUrl":null,"url":null,"abstract":"<p><p>Brain stress monitoring has emerged as a critical research area for understanding and managing stress and neurological health issues. This burgeoning field aims to provide accurate information and prediction about individuals' stress levels by analyzing behavioral data and physiological signals. To address this emerging problem, this research study proposes an innovative approach that uses an attention mechanism-based XLNet model (called BrainNet) for continuous stress monitoring and stress level prediction. The proposed model analyzes streams of brain data, including behavioral and physiological signal patterns using Swell and WESAD datasets. Testing on the Swell multi-class dataset, the model achieves an impressive accuracy of 95.76%. Furthermore, when evaluated on the WESAD dataset, it demonstrates even higher accuracy, reaching 98.32%. When applied to the binary classification of stress and no stress using the Swell dataset, the model achieves an outstanding accuracy of 97.19%. Comparative analysis with other previously published research studies underscores the superior performance of the proposed approach. In addition, cross-validation confirms the significance, efficacy, and robustness of the model in brain stress level prediction and aligns with the goals of smart diagnostics for understanding neurological behaviors.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1482994"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1482994","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Brain stress monitoring has emerged as a critical research area for understanding and managing stress and neurological health issues. This burgeoning field aims to provide accurate information and prediction about individuals' stress levels by analyzing behavioral data and physiological signals. To address this emerging problem, this research study proposes an innovative approach that uses an attention mechanism-based XLNet model (called BrainNet) for continuous stress monitoring and stress level prediction. The proposed model analyzes streams of brain data, including behavioral and physiological signal patterns using Swell and WESAD datasets. Testing on the Swell multi-class dataset, the model achieves an impressive accuracy of 95.76%. Furthermore, when evaluated on the WESAD dataset, it demonstrates even higher accuracy, reaching 98.32%. When applied to the binary classification of stress and no stress using the Swell dataset, the model achieves an outstanding accuracy of 97.19%. Comparative analysis with other previously published research studies underscores the superior performance of the proposed approach. In addition, cross-validation confirms the significance, efficacy, and robustness of the model in brain stress level prediction and aligns with the goals of smart diagnostics for understanding neurological behaviors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BrainNet:利用 XLNet 模型的皮电活动信号进行脑应激预测的自动化方法。
大脑压力监测已成为了解和管理压力及神经健康问题的一个重要研究领域。这一新兴领域旨在通过分析行为数据和生理信号,提供有关个人压力水平的准确信息和预测。为了解决这个新出现的问题,本研究提出了一种创新方法,即使用基于注意力机制的 XLNet 模型(称为 BrainNet)进行连续压力监测和压力水平预测。该模型利用 Swell 和 WESAD 数据集分析大脑数据流,包括行为和生理信号模式。在 Swell 多类数据集上进行测试时,该模型达到了令人印象深刻的 95.76% 的准确率。此外,在 WESAD 数据集上进行评估时,准确率更高,达到了 98.32%。当使用 Swell 数据集对压力和无压力进行二元分类时,该模型的准确率达到了 97.19%。与之前发表的其他研究成果的对比分析凸显了所提方法的卓越性能。此外,交叉验证证实了该模型在大脑压力水平预测中的重要性、有效性和稳健性,并与理解神经行为的智能诊断目标相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
期刊最新文献
Editorial: Computational modeling and machine learning methods in neurodevelopment and neurodegeneration: from basic research to clinical applications. Simulated synapse loss induces depression-like behaviors in deep reinforcement learning. Systematic review of cognitive impairment in drivers through mental workload using physiological measures of heart rate variability. Facial emotion recognition using deep quantum and advanced transfer learning mechanism. BrainNet: an automated approach for brain stress prediction utilizing electrodermal activity signal with XLNet model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1