Transcriptomic and de novo proteomic analyses of organotypic entorhino-hippocampal tissue cultures reveal changes in metabolic and signaling regulators in TTX-induced synaptic plasticity.

IF 3.3 3区 医学 Q2 NEUROSCIENCES Molecular Brain Pub Date : 2024-11-07 DOI:10.1186/s13041-024-01153-y
Maximilian Lenz, Paul Turko, Pia Kruse, Amelie Eichler, Zhuo Angel Chen, Juri Rappsilber, Imre Vida, Andreas Vlachos
{"title":"Transcriptomic and de novo proteomic analyses of organotypic entorhino-hippocampal tissue cultures reveal changes in metabolic and signaling regulators in TTX-induced synaptic plasticity.","authors":"Maximilian Lenz, Paul Turko, Pia Kruse, Amelie Eichler, Zhuo Angel Chen, Juri Rappsilber, Imre Vida, Andreas Vlachos","doi":"10.1186/s13041-024-01153-y","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the mechanisms of synaptic plasticity is crucial for elucidating how the brain adapts to internal and external stimuli. A key objective of plasticity is maintaining physiological activity states during perturbations by adjusting synaptic transmission through negative feedback mechanisms. However, identifying and characterizing novel molecular targets orchestrating synaptic plasticity remains a significant challenge. This study investigated the effects of tetrodotoxin (TTX)-induced synaptic plasticity within organotypic entorhino-hippocampal tissue cultures, offering insights into the functional, transcriptomic, and proteomic changes associated with network inhibition via voltage-gated sodium channel blockade. Our experiments demonstrate that TTX treatment induces substantial functional plasticity of excitatory synapses, as evidenced by increased miniature excitatory postsynaptic current (mEPSC) amplitudes and frequencies in both dentate granule cells and CA1 pyramidal neurons. Correlating transcriptomic and proteomic data, we identified novel targets for future research into homeostatic plasticity, including cytoglobin, SLIT-ROBO Rho GTPase Activating Protein 3, Transferrin receptor, and 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1. These data provide a valuable resource for future studies aiming to understand the orchestration of homeostatic plasticity by metabolic pathways in distinct cell types of the central nervous system.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"17 1","pages":"78"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01153-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the mechanisms of synaptic plasticity is crucial for elucidating how the brain adapts to internal and external stimuli. A key objective of plasticity is maintaining physiological activity states during perturbations by adjusting synaptic transmission through negative feedback mechanisms. However, identifying and characterizing novel molecular targets orchestrating synaptic plasticity remains a significant challenge. This study investigated the effects of tetrodotoxin (TTX)-induced synaptic plasticity within organotypic entorhino-hippocampal tissue cultures, offering insights into the functional, transcriptomic, and proteomic changes associated with network inhibition via voltage-gated sodium channel blockade. Our experiments demonstrate that TTX treatment induces substantial functional plasticity of excitatory synapses, as evidenced by increased miniature excitatory postsynaptic current (mEPSC) amplitudes and frequencies in both dentate granule cells and CA1 pyramidal neurons. Correlating transcriptomic and proteomic data, we identified novel targets for future research into homeostatic plasticity, including cytoglobin, SLIT-ROBO Rho GTPase Activating Protein 3, Transferrin receptor, and 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1. These data provide a valuable resource for future studies aiming to understand the orchestration of homeostatic plasticity by metabolic pathways in distinct cell types of the central nervous system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对有机型内虹膜-海马组织培养物进行的转录组学和新蛋白质组学分析揭示了TTX诱导的突触可塑性中代谢和信号调节因子的变化。
了解突触可塑性的机制对于阐明大脑如何适应内部和外部刺激至关重要。可塑性的一个关键目标是通过负反馈机制调整突触传递,从而在扰动过程中维持生理活动状态。然而,鉴定和描述协调突触可塑性的新型分子靶标仍然是一项重大挑战。本研究调查了河豚毒素(TTX)诱导的突触可塑性在器官型内虹膜-海马组织培养物中的影响,从而深入了解了通过电压门控钠通道阻断与网络抑制相关的功能、转录组和蛋白质组变化。我们的实验证明,TTX 处理可诱导兴奋性突触的实质性功能可塑性,这体现在齿状颗粒细胞和 CA1 锥体神经元的微型兴奋性突触后电流(mEPSC)振幅和频率的增加。通过关联转录组和蛋白质组数据,我们确定了未来研究同态可塑性的新靶点,包括细胞血红蛋白、SLIT-ROBO Rho GTPase Activating Protein 3、转铁蛋白受体和 3-羟基-3-甲基戊二酰-CoA 合成酶 1。这些数据为今后的研究提供了宝贵的资源,这些研究旨在了解中枢神经系统不同细胞类型中代谢途径对平衡可塑性的协调作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
期刊最新文献
Surgery impairs glymphatic activity and cognitive function in aged mice. Correction: A simple and reliable method for claustrum localization across age in mice. Sleep-driven prefrontal cortex coordinates temporal action and multimodal integration. The causal relationship between steroid hormones and risk of stroke: evidence from a two-sample Mendelian randomization study. Distribution and functional significance of KLF15 in mouse cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1