Flavia T T Antunes, Vinicius M Gadotti, Gerald W Zamponi
{"title":"The terpenes alpha-bisabolol and camphene modulate pruritus via an action on Cav3.2 T-type calcium channels.","authors":"Flavia T T Antunes, Vinicius M Gadotti, Gerald W Zamponi","doi":"10.1186/s13041-025-01196-9","DOIUrl":null,"url":null,"abstract":"<p><p>Alpha-bisabolol and camphene have demonstrated analgesic effects in inflammatory pain models by blocking Cav3.2 calcium channels. As the pain pathway overlaps with mechanisms for itch, and because Cav3.2 channels have been associated with itch in our previous work, we aimed to investigate the potential anti-itch effects of these two terpenes. Although both terpenes failed to show anti-pruritogenic properties when dissolved in aqueous PBS, when diluted in Hydroxypropyl-beta-cyclodextrin their bioactivity significantly increased. Both compounds significantly reduced scratching in the histaminergic itch model, whether administered subcutaneously or intraperitoneally. Camphene reduced itching in the non-histaminergic model regardless of the route of administration, whereas alpha-bisabolol did not alleviate chloroquine-induced itching. When tested in Cav3.2-/- mice, neither camphene nor alpha-bisabolol significantly reduced histamine-induced scratching behavior. This suggests that the anti-pruritic actions of these terpenes may involve Cav3.2 block to mitigate itch.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"22"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01196-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alpha-bisabolol and camphene have demonstrated analgesic effects in inflammatory pain models by blocking Cav3.2 calcium channels. As the pain pathway overlaps with mechanisms for itch, and because Cav3.2 channels have been associated with itch in our previous work, we aimed to investigate the potential anti-itch effects of these two terpenes. Although both terpenes failed to show anti-pruritogenic properties when dissolved in aqueous PBS, when diluted in Hydroxypropyl-beta-cyclodextrin their bioactivity significantly increased. Both compounds significantly reduced scratching in the histaminergic itch model, whether administered subcutaneously or intraperitoneally. Camphene reduced itching in the non-histaminergic model regardless of the route of administration, whereas alpha-bisabolol did not alleviate chloroquine-induced itching. When tested in Cav3.2-/- mice, neither camphene nor alpha-bisabolol significantly reduced histamine-induced scratching behavior. This suggests that the anti-pruritic actions of these terpenes may involve Cav3.2 block to mitigate itch.
期刊介绍:
Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings.
Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.