{"title":"Detection of Gram-positive and Gram-negative bacteria in brain abscesses by 16S rRNA in situ hybridization.","authors":"William Mbongo, Alvaro C Laga, Isaac H Solomon","doi":"10.1093/jnen/nlae118","DOIUrl":null,"url":null,"abstract":"<p><p>In situ hybridization (ISH) staining of bacterial 16S ribosomal RNA (rRNA) is an alternative to standard histological stains (eg, Gram, Warthin-Starry), and may improve the diagnosis of bacterial brain abscesses. To evaluate the utility of 16S rRNA ISH, a 10-year retrospective cohort was assembled from a large academic medical center. Results of histological stains, cultures, and 16S rRNA sequencing were extracted from reports, and new Gram and 16S rRNA ISH stains were performed. Histologically identifiable bacteria were present in 40/63 (63%) cases and 38/57 (67%) were associated with positive cultures. Overall, 16S rRNA ISH was positive in 18/63 (29%) cases, including 16/37 (43%) with positive Gram stains, 12/38 (32%) positive by culture, and 4/8 (50%) positive by sequencing. 16S rRNA ISH highlighted bacteria in 14/40 (35%) cases with Gram-positive organisms and 9/17 (53%) with Gram-negative organisms (including 6 polymicrobial cases). Compared to a composite gold standard of Gram stain and culture, the sensitivity and specificity of 16S rRNA ISH were 35% and 93%, respectively. While sensitivity is relatively low, 16S rRNA ISH may be useful for distinguishing real organisms from artifacts and for identifying brain abscess cases suitable for 16S rRNA sequencing.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology and Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlae118","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In situ hybridization (ISH) staining of bacterial 16S ribosomal RNA (rRNA) is an alternative to standard histological stains (eg, Gram, Warthin-Starry), and may improve the diagnosis of bacterial brain abscesses. To evaluate the utility of 16S rRNA ISH, a 10-year retrospective cohort was assembled from a large academic medical center. Results of histological stains, cultures, and 16S rRNA sequencing were extracted from reports, and new Gram and 16S rRNA ISH stains were performed. Histologically identifiable bacteria were present in 40/63 (63%) cases and 38/57 (67%) were associated with positive cultures. Overall, 16S rRNA ISH was positive in 18/63 (29%) cases, including 16/37 (43%) with positive Gram stains, 12/38 (32%) positive by culture, and 4/8 (50%) positive by sequencing. 16S rRNA ISH highlighted bacteria in 14/40 (35%) cases with Gram-positive organisms and 9/17 (53%) with Gram-negative organisms (including 6 polymicrobial cases). Compared to a composite gold standard of Gram stain and culture, the sensitivity and specificity of 16S rRNA ISH were 35% and 93%, respectively. While sensitivity is relatively low, 16S rRNA ISH may be useful for distinguishing real organisms from artifacts and for identifying brain abscess cases suitable for 16S rRNA sequencing.
期刊介绍:
Journal of Neuropathology & Experimental Neurology is the official journal of the American Association of Neuropathologists, Inc. (AANP). The journal publishes peer-reviewed studies on neuropathology and experimental neuroscience, book reviews, letters, and Association news, covering a broad spectrum of fields in basic neuroscience with an emphasis on human neurological diseases. It is written by and for neuropathologists, neurologists, neurosurgeons, pathologists, psychiatrists, and basic neuroscientists from around the world. Publication has been continuous since 1942.