Oral administration of butylated hydroxytoluene induces neuroprotection in a streptozotocin-induced rat Alzheimer's disease model via inhibition of neuronal ferroptosis.
{"title":"Oral administration of butylated hydroxytoluene induces neuroprotection in a streptozotocin-induced rat Alzheimer's disease model via inhibition of neuronal ferroptosis.","authors":"Parisa Faraji, Elham Parandavar, Hartmut Kuhn, Mehran Habibi-Rezaei, Astrid Borchert, Elham Zahedi, Shahin Ahmadian","doi":"10.1186/s10020-024-00980-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is the most common human neurodegenerative disorder worldwide. Owing to its chronic nature, our limited understanding of its pathophysiological mechanisms, and because of the lack of effective anti-AD drugs, AD represents a significant socio-economic challenge for all industrialized countries. Neuronal cell death is a key factor in AD pathogenesis and recent studies have suggested that neuronal ferroptosis may play a major patho-physiological role. Since ferroptosis involves free radical-mediated lipid peroxidation, we hypothesized that enteral administration of the radical scavenger butylated hydroxytoluene (BHT) might slow down or even prevent the development of AD-related symptoms in an in vivo animal AD model.</p><p><strong>Material and methods: </strong>To test this hypothesis, we employed the rat model of streptozotocin-induced AD and administered butylated hydroxytoluene orally at a dose of 120 mg/kg body weight. Following BHT treatment, neuronal cell death was induced by bilateral stereotactic intraventricular injection of streptozotocin at a dose of 3.0 mg/kg body weight. Three weeks after surgery, we assessed the learning capabilities and the short-term memory of three experimental groups using the conventional y-maze test: (i) streptozotocin-treated rats (BHT pre-treatment), (ii) streptozotocin-treated rats (no BHT pre-treatment), (iii) sham-operated rats (BHT pre-treatment but no streptozotocin administration). After the y-maze test, the animals were sacrificed, hippocampal tissue was prepared and several biochemical (malonyl dialdehyde formation, glutathione homeostasis, gene expression patterns) and histochemical (Congo-red staining, Nissl staining, Perls staining) readout parameters were quantified.</p><p><strong>Results: </strong>Intraventricular streptozotocin injection induced the development of AD-related symptoms, elevated the degree of lipid peroxidation and upregulated the expression of ferroptosis-related genes. Histochemical analysis indicated neuronal cell death and neuroinflammation, which were paralleled by aberrant intraneuronal iron deposition. The streptozotocin-induced alterations were significantly reduced and sometimes even abolished by oral BHT treatment.</p><p><strong>Conclusion: </strong>Our data indicate that oral BHT treatment attenuated the development of AD-related symptoms in an in vivo rat model, most probably via inhibiting neuronal ferroptosis. These findings suggest that BHT might constitute a promising candidate as anti-AD drug. However, more work is needed to explore the potential applicability of BHT in other models of neurodegeneration and in additional ferroptosis-related disorders.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00980-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Alzheimer's disease (AD) is the most common human neurodegenerative disorder worldwide. Owing to its chronic nature, our limited understanding of its pathophysiological mechanisms, and because of the lack of effective anti-AD drugs, AD represents a significant socio-economic challenge for all industrialized countries. Neuronal cell death is a key factor in AD pathogenesis and recent studies have suggested that neuronal ferroptosis may play a major patho-physiological role. Since ferroptosis involves free radical-mediated lipid peroxidation, we hypothesized that enteral administration of the radical scavenger butylated hydroxytoluene (BHT) might slow down or even prevent the development of AD-related symptoms in an in vivo animal AD model.
Material and methods: To test this hypothesis, we employed the rat model of streptozotocin-induced AD and administered butylated hydroxytoluene orally at a dose of 120 mg/kg body weight. Following BHT treatment, neuronal cell death was induced by bilateral stereotactic intraventricular injection of streptozotocin at a dose of 3.0 mg/kg body weight. Three weeks after surgery, we assessed the learning capabilities and the short-term memory of three experimental groups using the conventional y-maze test: (i) streptozotocin-treated rats (BHT pre-treatment), (ii) streptozotocin-treated rats (no BHT pre-treatment), (iii) sham-operated rats (BHT pre-treatment but no streptozotocin administration). After the y-maze test, the animals were sacrificed, hippocampal tissue was prepared and several biochemical (malonyl dialdehyde formation, glutathione homeostasis, gene expression patterns) and histochemical (Congo-red staining, Nissl staining, Perls staining) readout parameters were quantified.
Results: Intraventricular streptozotocin injection induced the development of AD-related symptoms, elevated the degree of lipid peroxidation and upregulated the expression of ferroptosis-related genes. Histochemical analysis indicated neuronal cell death and neuroinflammation, which were paralleled by aberrant intraneuronal iron deposition. The streptozotocin-induced alterations were significantly reduced and sometimes even abolished by oral BHT treatment.
Conclusion: Our data indicate that oral BHT treatment attenuated the development of AD-related symptoms in an in vivo rat model, most probably via inhibiting neuronal ferroptosis. These findings suggest that BHT might constitute a promising candidate as anti-AD drug. However, more work is needed to explore the potential applicability of BHT in other models of neurodegeneration and in additional ferroptosis-related disorders.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.