Organic-Inorganic Hybridization of Silkworm Cocoon Filaments Using Nano Pastes of Silica-Phosphate-M (M = Cu, Fe, or Al).

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-10-23 DOI:10.3390/nano14211697
I Wayan Karyasa, Enike Dwi Kusumawati, Retno Agustarini, Lincah Andadari, Herman Sari
{"title":"Organic-Inorganic Hybridization of Silkworm Cocoon Filaments Using Nano Pastes of Silica-Phosphate-M (M = Cu, Fe, or Al).","authors":"I Wayan Karyasa, Enike Dwi Kusumawati, Retno Agustarini, Lincah Andadari, Herman Sari","doi":"10.3390/nano14211697","DOIUrl":null,"url":null,"abstract":"<p><p>Inorganic-organic hybrid biomaterials have recently attracted much attention because of their widespread use. Silkworm cocoon filaments resulting from sericulture as prospective nanobiomaterials need to be improved, and their properties need to be used for broader purposes. This study was aimed at investigating methods for siliconization of silkworm cocoon filaments and characterizing their cocoon filament properties in terms of their yarn quality, natural dyeing, and antibacterial properties. Three methods of hybridization processes were used in this experiment, namely, in situ natural dyeing of silk yarns while silk filaments were spined, feed engineering through spraying the mulberry leaves with natural dyes and silica-phosphate-M (M = Cu, Fe, or Al) nano pastes, and a combination of both methods. The resulting cocoon filaments were characterized by their siliconization of filament fibers by using FTIR, XRD, and SEM-EDS methods. The yarn tensile strength, color quality, color fastness properties affected by the siliconization of silk filament fibers, and antibacterial properties were also investigated. Results showed that the combination method produced better siliconization of silk fibers, and, consequently, the better siliconization of silk fibers produced better natural dyeing as well as antibacterial properties of their resulting silk yarns.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211697","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic-organic hybrid biomaterials have recently attracted much attention because of their widespread use. Silkworm cocoon filaments resulting from sericulture as prospective nanobiomaterials need to be improved, and their properties need to be used for broader purposes. This study was aimed at investigating methods for siliconization of silkworm cocoon filaments and characterizing their cocoon filament properties in terms of their yarn quality, natural dyeing, and antibacterial properties. Three methods of hybridization processes were used in this experiment, namely, in situ natural dyeing of silk yarns while silk filaments were spined, feed engineering through spraying the mulberry leaves with natural dyes and silica-phosphate-M (M = Cu, Fe, or Al) nano pastes, and a combination of both methods. The resulting cocoon filaments were characterized by their siliconization of filament fibers by using FTIR, XRD, and SEM-EDS methods. The yarn tensile strength, color quality, color fastness properties affected by the siliconization of silk filament fibers, and antibacterial properties were also investigated. Results showed that the combination method produced better siliconization of silk fibers, and, consequently, the better siliconization of silk fibers produced better natural dyeing as well as antibacterial properties of their resulting silk yarns.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用硅磷酸盐-M(M = 铜、铁或铝)纳米浆料实现蚕茧丝的有机-无机杂化。
无机-有机杂化生物材料因其广泛的应用而备受关注。由养蚕产生的蚕茧丝作为一种前景广阔的纳米生物材料,其性能有待改进,其用途也有待拓宽。本研究旨在探讨蚕茧丝硅化的方法,并从蚕茧丝的纱线质量、天然染色和抗菌性能等方面分析其特性。本实验采用了三种杂化工艺方法,即在蚕丝纺丝的同时对蚕丝进行原位天然染色、通过在桑叶上喷洒天然染料和硅-磷-M(M = 铜、铁或铝)纳米浆料进行饲料工程以及两种方法的组合。利用傅立叶变换红外光谱、X 射线衍射和扫描电子显微镜-电子显微镜方法,对所制备的茧丝进行长丝纤维硅化表征。此外,还研究了蚕丝长丝纤维硅化对纱线拉伸强度、颜色质量、色牢度以及抗菌性能的影响。结果表明,组合方法能使蚕丝纤维硅化效果更好,因此,硅化效果更好的蚕丝纤维所制成的蚕丝纱的天然染色和抗菌性能也更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Electric Field-Enhanced SERS Detection Using MoS2-Coated Patterned Si Substrate with Micro-Pyramid Pits. Synthesis and Characterization of Microcapsules as Fillers for Self-Healing Dental Composites. Nano-Silver-Loaded Activated Carbon Material Derived from Waste Rice Noodles: Adsorption and Antibacterial Performance. Effective Piecewise Mass Distributions for Optimal Energy Eigenvalues of a Particle in Low-Dimensional Heterojunctions. Thermal Decomposition of Core-Shell-Structured RDX@AlH3, HMX@AlH3, and CL-20@AlH3 Nanoparticles: Reactive Molecular Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1