Guanzhi Ding, Guangzhi Qin, Wanying Ying, Pengyu Wang, Yang Yang, Chuanyang Tang, Qing Liu, Minghui Li, Ke Huang, Shuoping Chen
{"title":"Nano-Silver-Loaded Activated Carbon Material Derived from Waste Rice Noodles: Adsorption and Antibacterial Performance.","authors":"Guanzhi Ding, Guangzhi Qin, Wanying Ying, Pengyu Wang, Yang Yang, Chuanyang Tang, Qing Liu, Minghui Li, Ke Huang, Shuoping Chen","doi":"10.3390/nano14221857","DOIUrl":null,"url":null,"abstract":"<p><p>This study demonstrates, for the first time, the conversion of waste rice noodles (WRN) into a cost-effective, nano-silver-loaded activated carbon (Ag/AC) material capable of efficient adsorption and antibacterial activity. The fabrication process began with the conversion of WRN into hydrothermal carbon (HTC) via a hydrothermal method. Subsequently, the HTC was combined with silver nitrate (AgNO<sub>3</sub>) and sodium hydroxide (NaOH), followed by activation through high-temperature calcination, during which AgNO<sub>3</sub> was reduced to nano-Ag and loaded onto the HTC-derived AC, resulting in a composite material with both excellent adsorption properties and antibacterial activity. The experimental results indicated that the incorporation of nano-Ag significantly enhanced the specific surface area of the Ag/AC composite and altered its pore size distribution characteristics. Under optimized preparation conditions, the obtained Ag/AC material exhibited a specific surface area of 2025.96 m<sup>2</sup>/g and an average pore size of 2.14 nm, demonstrating effective adsorption capabilities for the heavy metal Cr(VI). Under conditions of pH 2 and room temperature (293 K), the maximum equilibrium adsorption capacity for Cr(VI) reached 97.07 mg/g. The adsorption behavior of the resulting Ag/AC fitted the Freundlich adsorption isotherm and followed a pseudo-second-order kinetic model. Furthermore, the Ag/AC composite exhibited remarkable inhibitory effects against common pathogenic bacteria such as <i>E. coli</i> and <i>S. aureus</i>, achieving antibacterial rates of 100% and 81%, respectively, after a contact time of 4 h. These findings confirm the feasibility of utilizing the HTC method to process WRN and produce novel AC-based functional materials.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 22","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597512/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14221857","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study demonstrates, for the first time, the conversion of waste rice noodles (WRN) into a cost-effective, nano-silver-loaded activated carbon (Ag/AC) material capable of efficient adsorption and antibacterial activity. The fabrication process began with the conversion of WRN into hydrothermal carbon (HTC) via a hydrothermal method. Subsequently, the HTC was combined with silver nitrate (AgNO3) and sodium hydroxide (NaOH), followed by activation through high-temperature calcination, during which AgNO3 was reduced to nano-Ag and loaded onto the HTC-derived AC, resulting in a composite material with both excellent adsorption properties and antibacterial activity. The experimental results indicated that the incorporation of nano-Ag significantly enhanced the specific surface area of the Ag/AC composite and altered its pore size distribution characteristics. Under optimized preparation conditions, the obtained Ag/AC material exhibited a specific surface area of 2025.96 m2/g and an average pore size of 2.14 nm, demonstrating effective adsorption capabilities for the heavy metal Cr(VI). Under conditions of pH 2 and room temperature (293 K), the maximum equilibrium adsorption capacity for Cr(VI) reached 97.07 mg/g. The adsorption behavior of the resulting Ag/AC fitted the Freundlich adsorption isotherm and followed a pseudo-second-order kinetic model. Furthermore, the Ag/AC composite exhibited remarkable inhibitory effects against common pathogenic bacteria such as E. coli and S. aureus, achieving antibacterial rates of 100% and 81%, respectively, after a contact time of 4 h. These findings confirm the feasibility of utilizing the HTC method to process WRN and produce novel AC-based functional materials.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.