Juxing He , Shibin Zhang , Pengcheng Zheng , Xiaoli Fang , Hulin Yao , Mijing Sun , Dongchen Sui , Yanlong Yao , Chongxi Song , Zheng Zhou , Xin Ou
{"title":"Band edge modulation for high-performance LL-SAW resonators on LiNbO3/SiC by introducing an ultra-thin intermediate oxide layer","authors":"Juxing He , Shibin Zhang , Pengcheng Zheng , Xiaoli Fang , Hulin Yao , Mijing Sun , Dongchen Sui , Yanlong Yao , Chongxi Song , Zheng Zhou , Xin Ou","doi":"10.1016/j.ultras.2024.107508","DOIUrl":null,"url":null,"abstract":"<div><div>With the exploding demand of rapid information transmission, high-frequency acoustic filtering devices are becoming an immediate need. Longitudinal leaky surface acoustic wave (LL-SAW) devices with unique advantages can be a promising platform. In this paper, we introduce a 100 nm intermediate oxide layer into the X-cut lithium niobate on silicon carbide (LiNbO<sub>3</sub>/SiC) to improve the in-band performance of LL-SAW resonators. First, the dispersion curves of the structures are analyzed by finite element method. In this part, we successfully interpret the intrinsic low quality factor (<em>Q</em>) of LL-SAW on LiNbO<sub>3</sub>/SiC in general design, and predict the enhancement of <em>Q</em> by introducing an intermediate oxide layer without degradation on spurious response. Then, one port resonators considered in the simulation are fabricated and measured. As a result, enhancements in <em>Bode Q</em> among the whole passband are confirmed. Compared with devices state of art, resonators with leading performances are demonstrated. The fabricated resonators have peak-valley admittance ratio of 63.87 dB, <em>Bode Q</em> of ∼300 at <em>f<sub>r</sub></em> and ∼530 at <em>f<sub>ar</sub></em>, <span><math><mrow><msubsup><mtext>k</mtext><mrow><mtext>eff</mtext></mrow><mtext>2</mtext></msubsup><mspace></mspace><mtext>of</mtext></mrow></math></span> 15.66 % and phase velocity of 6187.3 m/s. Additionally, the resonant frequency of SH1 mode shifts to higher frequency. This work enables the design of next generation high frequency mobile communication filters.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107508"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002713","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the exploding demand of rapid information transmission, high-frequency acoustic filtering devices are becoming an immediate need. Longitudinal leaky surface acoustic wave (LL-SAW) devices with unique advantages can be a promising platform. In this paper, we introduce a 100 nm intermediate oxide layer into the X-cut lithium niobate on silicon carbide (LiNbO3/SiC) to improve the in-band performance of LL-SAW resonators. First, the dispersion curves of the structures are analyzed by finite element method. In this part, we successfully interpret the intrinsic low quality factor (Q) of LL-SAW on LiNbO3/SiC in general design, and predict the enhancement of Q by introducing an intermediate oxide layer without degradation on spurious response. Then, one port resonators considered in the simulation are fabricated and measured. As a result, enhancements in Bode Q among the whole passband are confirmed. Compared with devices state of art, resonators with leading performances are demonstrated. The fabricated resonators have peak-valley admittance ratio of 63.87 dB, Bode Q of ∼300 at fr and ∼530 at far, 15.66 % and phase velocity of 6187.3 m/s. Additionally, the resonant frequency of SH1 mode shifts to higher frequency. This work enables the design of next generation high frequency mobile communication filters.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.