Seppo T Rinne, Julian Brunner, Timothy P Hogan, Jacqueline M Ferguson, Drew A Helmer, Sylvia J Hysong, Grace McKee, Amanda Midboe, Megan E Shepherd-Banigan, A Rani Elwy
{"title":"A use case of ChatGPT: summary of an expert panel discussion on electronic health records and implementation science.","authors":"Seppo T Rinne, Julian Brunner, Timothy P Hogan, Jacqueline M Ferguson, Drew A Helmer, Sylvia J Hysong, Grace McKee, Amanda Midboe, Megan E Shepherd-Banigan, A Rani Elwy","doi":"10.3389/fdgth.2024.1426057","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Artificial intelligence (AI) is revolutionizing healthcare, but less is known about how it may facilitate methodological innovations in research settings. In this manuscript, we describe a novel use of AI in summarizing and reporting qualitative data generated from an expert panel discussion about the role of electronic health records (EHRs) in implementation science.</p><p><strong>Materials and methods: </strong>15 implementation scientists participated in an hour-long expert panel discussion addressing how EHRs can support implementation strategies, measure implementation outcomes, and influence implementation science. Notes from the discussion were synthesized by ChatGPT (a large language model-LLM) to generate a manuscript summarizing the discussion, which was later revised by participants. We also surveyed participants on their experience with the process.</p><p><strong>Results: </strong>Panelists identified implementation strategies and outcome measures that can be readily supported by EHRs and noted that implementation science will need to evolve to assess future EHR advancements. The ChatGPT-generated summary of the panel discussion was generally regarded as an efficient means to offer a high-level overview of the discussion, although participants felt it lacked nuance and context. Extensive editing was required to contextualize the LLM-generated text and situate it in relevant literature.</p><p><strong>Discussion and conclusions: </strong>Our qualitative findings highlight the central role EHRs can play in supporting implementation science, which may require additional informatics and implementation expertise and a different way to think about the combined fields. Our experience using ChatGPT as a research methods innovation was mixed and underscores the need for close supervision and attentive human involvement.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2024.1426057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Artificial intelligence (AI) is revolutionizing healthcare, but less is known about how it may facilitate methodological innovations in research settings. In this manuscript, we describe a novel use of AI in summarizing and reporting qualitative data generated from an expert panel discussion about the role of electronic health records (EHRs) in implementation science.
Materials and methods: 15 implementation scientists participated in an hour-long expert panel discussion addressing how EHRs can support implementation strategies, measure implementation outcomes, and influence implementation science. Notes from the discussion were synthesized by ChatGPT (a large language model-LLM) to generate a manuscript summarizing the discussion, which was later revised by participants. We also surveyed participants on their experience with the process.
Results: Panelists identified implementation strategies and outcome measures that can be readily supported by EHRs and noted that implementation science will need to evolve to assess future EHR advancements. The ChatGPT-generated summary of the panel discussion was generally regarded as an efficient means to offer a high-level overview of the discussion, although participants felt it lacked nuance and context. Extensive editing was required to contextualize the LLM-generated text and situate it in relevant literature.
Discussion and conclusions: Our qualitative findings highlight the central role EHRs can play in supporting implementation science, which may require additional informatics and implementation expertise and a different way to think about the combined fields. Our experience using ChatGPT as a research methods innovation was mixed and underscores the need for close supervision and attentive human involvement.