Hydroxyl-Poor Al2O3 Avoids the Formation of ZnAl2O4 Spinel for Propane Dehydrogenation

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2024-11-04 DOI:10.1021/acs.iecr.4c0238910.1021/acs.iecr.4c02389
Zhiyuan Wang, Hongyin Chen, Shaojia Song*, Bowen Liu, Weiyu Song*, Lin Li and Jian Liu, 
{"title":"Hydroxyl-Poor Al2O3 Avoids the Formation of ZnAl2O4 Spinel for Propane Dehydrogenation","authors":"Zhiyuan Wang,&nbsp;Hongyin Chen,&nbsp;Shaojia Song*,&nbsp;Bowen Liu,&nbsp;Weiyu Song*,&nbsp;Lin Li and Jian Liu,&nbsp;","doi":"10.1021/acs.iecr.4c0238910.1021/acs.iecr.4c02389","DOIUrl":null,"url":null,"abstract":"<p >Zinc-based catalysts offer the advantages of high catalytic activity, low cost, and low toxicity, which are deemed as promising alternatives for Pt- and CrO<sub><i>x</i></sub>-based catalysts toward propane dehydrogenation (PDH). However, ZnO/Al<sub>2</sub>O<sub>3</sub> is prone to form the ZnAl<sub>2</sub>O<sub>4</sub> spinel phase at high temperatures, which limits the further utilization of Zn-based propane dehydrogenation catalysts. Here, the reason for the formation of ZnAl<sub>2</sub>O<sub>4</sub> is investigated by changing the calcination atmosphere. XRD, Raman, XPS, UV–vis, and H<sub>2</sub>-FTIR characterizations and density functional calculations show that hydroxyl-rich Al<sub>2</sub>O<sub>3</sub> promotes the formation of the ZnAl<sub>2</sub>O<sub>4</sub> spinel phase. In order to avoid the formation of ZnAl<sub>2</sub>O<sub>4</sub> spinel, a sol–gel method was employed to synthesize hydroxyl-poor Al<sub>2</sub>O<sub>3</sub>, which inhibited ZnAl<sub>2</sub>O<sub>4</sub> formation and enabled Zn species to mainly exist in the form of ZnO nanoclusters after calcination. As a result, hydroxyl-poor Al<sub>2</sub>O<sub>3</sub>-supported ZnO exhibited better PDH performance than the case with hydroxyl-rich Al<sub>2</sub>O<sub>3</sub> supports. Combined with quantitative XPS calculations, ZnO was shown to be a more efficient active center for ZnO/Al<sub>2</sub>O<sub>3</sub> systems in the PDH reaction.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 45","pages":"19457–19465 19457–19465"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c02389","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-based catalysts offer the advantages of high catalytic activity, low cost, and low toxicity, which are deemed as promising alternatives for Pt- and CrOx-based catalysts toward propane dehydrogenation (PDH). However, ZnO/Al2O3 is prone to form the ZnAl2O4 spinel phase at high temperatures, which limits the further utilization of Zn-based propane dehydrogenation catalysts. Here, the reason for the formation of ZnAl2O4 is investigated by changing the calcination atmosphere. XRD, Raman, XPS, UV–vis, and H2-FTIR characterizations and density functional calculations show that hydroxyl-rich Al2O3 promotes the formation of the ZnAl2O4 spinel phase. In order to avoid the formation of ZnAl2O4 spinel, a sol–gel method was employed to synthesize hydroxyl-poor Al2O3, which inhibited ZnAl2O4 formation and enabled Zn species to mainly exist in the form of ZnO nanoclusters after calcination. As a result, hydroxyl-poor Al2O3-supported ZnO exhibited better PDH performance than the case with hydroxyl-rich Al2O3 supports. Combined with quantitative XPS calculations, ZnO was shown to be a more efficient active center for ZnO/Al2O3 systems in the PDH reaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贫羟基 Al2O3 可避免形成用于丙烷脱氢的 ZnAl2O4 尖晶石
锌基催化剂具有催化活性高、成本低、毒性小等优点,被认为是铂基和氧化铬基催化剂的理想替代品,可用于丙烷脱氢(PDH)。然而,ZnO/Al2O3 在高温下容易形成 ZnAl2O4 尖晶石相,这限制了 Zn 基丙烷脱氢催化剂的进一步利用。在此,我们通过改变煅烧气氛来研究 ZnAl2O4 形成的原因。XRD、拉曼、XPS、UV-vis 和 H2-FTIR 表征以及密度泛函计算表明,富含羟基的 Al2O3 促进了 ZnAl2O4 尖晶石相的形成。为了避免 ZnAl2O4 尖晶石的形成,采用了溶胶-凝胶法合成贫羟基 Al2O3,从而抑制了 ZnAl2O4 的形成,使 Zn 物种在煅烧后主要以 ZnO 纳米团簇的形式存在。因此,与富含羟基的 Al2O3 相比,贫羟基 Al2O3 支持的氧化锌具有更好的 PDH 性能。结合定量 XPS 计算,氧化锌被证明是 ZnO/Al2O3 系统在 PDH 反应中更有效的活性中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Multifaceted Roles of Additives in Regulating Crystal Growth: A Case of Acephate Graph-Based Modeling and Molecular Dynamics for Ion Activity Coefficient Prediction in Polymeric Ion-Exchange Membranes Study on the Thermal Behavior of Mixtures of Ammonium Nitrate and Micronutrient Chelates with Potential toward Enhancing the Efficiency of Precision Agriculture Macro-microreactor-Based Process Intensification for Achievement of High-Mixing-Performance, Low-Pressure-Drop, and High-Throughput Liquid–Liquid Homogeneous Chemical Processes Enhancing Reactive Microemulsion Processes: Dynamic Optimization and Cyclic Semibatch Operation for the Reductive Amination of Undecanal in a Mini-Plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1