Kombucha–Proteinoid Crystal Bioelectric Circuits

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-28 DOI:10.1021/acsomega.4c0731910.1021/acsomega.4c07319
Panagiotis Mougkogiannis*, Anna Nikolaidou and Andrew Adamatzky, 
{"title":"Kombucha–Proteinoid Crystal Bioelectric Circuits","authors":"Panagiotis Mougkogiannis*,&nbsp;Anna Nikolaidou and Andrew Adamatzky,&nbsp;","doi":"10.1021/acsomega.4c0731910.1021/acsomega.4c07319","DOIUrl":null,"url":null,"abstract":"<p >We propose “kombucha–proteinoid crystal bioelectric circuits” as a sustainable bio-computing platform. These circuits are hybrid biological-inorganic devices that utilize crystal growth dynamics as the physical substrate to convert information. Microfluidic prototypes couple custom-synthesized thermal proteinoids within kombucha cellulose matrices and metastable calcium carbonate solutions. This bio-mineral configuration examines if precision modulation of crystal growth rates could instantiate reconfigurable logic gates for unconventional computing applications. Programming organic acid secretions allows for the adjustment of biotic-mineral polarity, thereby establishing microbial-synthetic pairings that consistently regulate the crystal growth rate of calcite deposition. By coordinating intrinsic physicochemical phenomena, accrued mineral densities literally crystallize additive/multiplicative operations via Boolean AND/OR logics. An additional way to generate structured logics similar of neural assemblies is by chaining modular crystallizer units. Proteinoid-guided carbonate crystallization may prove to be a viable material platform for unconventional computing-green, self-organizing, scalable architectures grown directly from solution-pending definitive affirmation of proof-of-concept.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07319","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07319","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We propose “kombucha–proteinoid crystal bioelectric circuits” as a sustainable bio-computing platform. These circuits are hybrid biological-inorganic devices that utilize crystal growth dynamics as the physical substrate to convert information. Microfluidic prototypes couple custom-synthesized thermal proteinoids within kombucha cellulose matrices and metastable calcium carbonate solutions. This bio-mineral configuration examines if precision modulation of crystal growth rates could instantiate reconfigurable logic gates for unconventional computing applications. Programming organic acid secretions allows for the adjustment of biotic-mineral polarity, thereby establishing microbial-synthetic pairings that consistently regulate the crystal growth rate of calcite deposition. By coordinating intrinsic physicochemical phenomena, accrued mineral densities literally crystallize additive/multiplicative operations via Boolean AND/OR logics. An additional way to generate structured logics similar of neural assemblies is by chaining modular crystallizer units. Proteinoid-guided carbonate crystallization may prove to be a viable material platform for unconventional computing-green, self-organizing, scalable architectures grown directly from solution-pending definitive affirmation of proof-of-concept.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
昆布茶-蛋白晶体生物电路
我们提出将 "昆布蛋白晶体生物电路 "作为一种可持续的生物计算平台。这些电路是生物-无机混合装置,利用晶体生长动力学作为转换信息的物理基底。微流体原型将定制合成的热蛋白结合到昆布纤维素基质和可析出碳酸钙溶液中。这种生物-矿物配置研究了晶体生长速率的精确调制是否可以为非常规计算应用实例化可重构逻辑门。通过对有机酸分泌物进行编程,可以调整生物-矿物极性,从而建立微生物-合成配对关系,持续调节方解石沉积的晶体生长速率。通过协调内在的物理化学现象,累积的矿物密度可以通过布尔 AND/OR 逻辑进行加法/乘法运算。产生类似于神经组装的结构逻辑的另一种方法是将模块化结晶器单元连锁起来。蛋白酶引导下的碳酸盐结晶可能会被证明是非常规计算的可行材料平台--绿色、自组织、可扩展的架构,直接从溶液中生长出来,但还有待于概念验证的最终确认。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1