Unraveling the Synergistic Role of Kinks in Zig-Zag Ag2Se Nanorod Arrays for High Room-Temperature zT and Improved Mechanical Properties: Experimental and First-Principles Studies
Jamal Ahmad Khan, Ruman Moulik, Saswata Bhattacharya, J. P. Singh
{"title":"Unraveling the Synergistic Role of Kinks in Zig-Zag Ag2Se Nanorod Arrays for High Room-Temperature zT and Improved Mechanical Properties: Experimental and First-Principles Studies","authors":"Jamal Ahmad Khan, Ruman Moulik, Saswata Bhattacharya, J. P. Singh","doi":"10.1021/acsami.4c12282","DOIUrl":null,"url":null,"abstract":"Flexible thermoelectric materials are usually fabricated by incorporating conducting or organic polymers; however, it remains a formidable task to achieve high thermoelectric properties comparable to those of their inorganic counterparts. Here, we present a high zT value of 1.29 ± 0.31 at room temperature in the hierarchical zig-zag Ag<sub>2</sub>Se nanorod arrays fabricated using the glancing angle deposition (GLAD) technique followed by a facile selenization process. The high zT value at 300 K is ascribed to the ultrahigh power factor of 3101 ± 252 μW/m-K<sup>2</sup> and the reduced thermal conductivity of 0.72 ± 0.01 W/mK. Based on <i>ab initio</i> computational and experimental evidence, we reveal that kinked Ag<sub>2</sub>Se nanorod arrays consisting of rough interfaces modulate the lattice thermal conductivity up to 48.5% at room temperature. The modulation results from interchanging of phonon modes at kink points and enhanced scattering from a large number of rough interfaces. Further, benefiting from kinked hierarchy, a notable improvement in the mechanical performance is observed for zig-zag Ag<sub>2</sub>Se nanorods which is confirmed by nanoindentation measurements. The synergic improvement in thermoelectric and mechanical performance not only unravels a paradigm to harness thermoelectric heat but also offers deeper insights into tuning the mechanical properties of inorganic thermoelectric materials.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c12282","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible thermoelectric materials are usually fabricated by incorporating conducting or organic polymers; however, it remains a formidable task to achieve high thermoelectric properties comparable to those of their inorganic counterparts. Here, we present a high zT value of 1.29 ± 0.31 at room temperature in the hierarchical zig-zag Ag2Se nanorod arrays fabricated using the glancing angle deposition (GLAD) technique followed by a facile selenization process. The high zT value at 300 K is ascribed to the ultrahigh power factor of 3101 ± 252 μW/m-K2 and the reduced thermal conductivity of 0.72 ± 0.01 W/mK. Based on ab initio computational and experimental evidence, we reveal that kinked Ag2Se nanorod arrays consisting of rough interfaces modulate the lattice thermal conductivity up to 48.5% at room temperature. The modulation results from interchanging of phonon modes at kink points and enhanced scattering from a large number of rough interfaces. Further, benefiting from kinked hierarchy, a notable improvement in the mechanical performance is observed for zig-zag Ag2Se nanorods which is confirmed by nanoindentation measurements. The synergic improvement in thermoelectric and mechanical performance not only unravels a paradigm to harness thermoelectric heat but also offers deeper insights into tuning the mechanical properties of inorganic thermoelectric materials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.