Fast and generalizable micromagnetic simulation with deep neural nets

IF 5.1 Q1 POLYMER SCIENCE ACS Macro Letters Pub Date : 2024-11-14 DOI:10.1038/s42256-024-00914-7
Yunqi Cai, Jiangnan Li, Dong Wang
{"title":"Fast and generalizable micromagnetic simulation with deep neural nets","authors":"Yunqi Cai, Jiangnan Li, Dong Wang","doi":"10.1038/s42256-024-00914-7","DOIUrl":null,"url":null,"abstract":"<p>Important progress has been made in micromagnetics, driven by its wide-ranging applications in magnetic storage design. Numerical simulation, a cornerstone of micromagnetics research, relies on first-principles rules to compute the dynamic evolution of micromagnetic systems using the renowned Landau–Lifshitz–Gilbert equation, named after Landau, Lifshitz and Gilbert. However, these simulations are often hindered by their slow speeds. Although fast Fourier transformation calculations reduce the computational complexity to O(<i>N</i>log(<i>N</i>)), it remains impractical for large-scale simulations. Here we introduce NeuralMAG, a deep learning approach to micromagnetic simulation. Our approach follows the Landau–Lifshitz–Gilbert iterative framework but accelerates computation of demagnetizing fields by employing a U-shaped neural network. This neural network architecture comprises an encoder that extracts aggregated spins at various scales and learns the local interaction at each scale, followed by a decoder that accumulates the local interactions at different scales to approximate the global convolution. This divide-and-accumulate scheme achieves a time complexity of O(<i>N</i>), notably enhancing the speed and feasibility of large-scale simulations. Unlike existing neural methods, NeuralMAG concentrates on the core computation—rather than an end-to-end approximation for a specific task—making it inherently generalizable. To validate the new approach, we trained a single model and evaluated it on two micromagnetics tasks with various sample sizes, shapes and material settings.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00914-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Important progress has been made in micromagnetics, driven by its wide-ranging applications in magnetic storage design. Numerical simulation, a cornerstone of micromagnetics research, relies on first-principles rules to compute the dynamic evolution of micromagnetic systems using the renowned Landau–Lifshitz–Gilbert equation, named after Landau, Lifshitz and Gilbert. However, these simulations are often hindered by their slow speeds. Although fast Fourier transformation calculations reduce the computational complexity to O(Nlog(N)), it remains impractical for large-scale simulations. Here we introduce NeuralMAG, a deep learning approach to micromagnetic simulation. Our approach follows the Landau–Lifshitz–Gilbert iterative framework but accelerates computation of demagnetizing fields by employing a U-shaped neural network. This neural network architecture comprises an encoder that extracts aggregated spins at various scales and learns the local interaction at each scale, followed by a decoder that accumulates the local interactions at different scales to approximate the global convolution. This divide-and-accumulate scheme achieves a time complexity of O(N), notably enhancing the speed and feasibility of large-scale simulations. Unlike existing neural methods, NeuralMAG concentrates on the core computation—rather than an end-to-end approximation for a specific task—making it inherently generalizable. To validate the new approach, we trained a single model and evaluated it on two micromagnetics tasks with various sample sizes, shapes and material settings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度神经网络进行快速、通用的微磁模拟
在磁存储设计的广泛应用推动下,微磁学取得了重要进展。数值模拟是微磁学研究的基石,它依赖于第一原理规则,利用以 Landau、Lifshitz 和 Gilbert 命名的著名的 Landau-Lifshitz-Gilbert 方程计算微磁系统的动态演化。然而,这些模拟往往因速度慢而受阻。虽然快速傅立叶变换计算能将计算复杂度降低到 O(Nlog(N)),但对于大规模仿真来说仍然不切实际。在此,我们介绍一种用于微磁模拟的深度学习方法--NeuralMAG。我们的方法遵循 Landau-Lifshitz-Gilbert 迭代框架,但通过采用 U 型神经网络来加速消磁场的计算。这种神经网络架构由一个编码器和一个解码器组成,编码器负责提取不同尺度的聚合自旋,并学习每个尺度的局部相互作用,解码器则负责累积不同尺度的局部相互作用,以近似全局卷积。这种 "分割-累积 "方案的时间复杂度为 O(N),显著提高了大规模模拟的速度和可行性。与现有的神经方法不同,NeuralMAG 专注于核心计算,而不是针对特定任务的端到端近似,因此具有内在的通用性。为了验证这种新方法,我们训练了一个单一模型,并在两个具有不同样本大小、形状和材料设置的微观磁学任务中对其进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
期刊最新文献
Modeling of Chain Sequence Length and Distribution in Random Copolyesters Light-Driven Organocatalyzed Controlled Radical Copolymerization of (Perfluoroalkyl)ethylenes and Vinyl Esters/Amides Circular Cross-Linked Polyethylene Enabled by In-Chain Ketones. Fast and generalizable micromagnetic simulation with deep neural nets High-Resolution Total Internal Reflection-Based Structural Coloration by Electrohydrodynamic Jet Printing of Transparent Polyethylene Glycol Microdomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1