Emily C. First, Ishan Mishra, Esteban Gazel, Nikole K. Lewis, Jonathan Letai, Leonard Hanssen
{"title":"Potential for observing geological diversity from mid-infrared spectra of rocky exoplanets","authors":"Emily C. First, Ishan Mishra, Esteban Gazel, Nikole K. Lewis, Jonathan Letai, Leonard Hanssen","doi":"10.1038/s41550-024-02412-7","DOIUrl":null,"url":null,"abstract":"<p>The James Webb Space Telescope can potentially explore the geological diversity of the surfaces of rocky exoplanets, especially due to its access to mid-infrared wavelengths. Here we investigate the level of geological detail that it could be possible to observe with the low-resolution spectroscopy and photometric modes of the mid-infrared instrument onboard the James Webb Space Telescope. We used new emissivity measurements of 15 basaltic samples between 2 μm and 25 μm to produce synthetic spectra and photometric fluxes. We found that the mid-infrared instrument can, in principle, distinguish several specific mineralogical and bulk chemical signals among relatively similar rocks. In particular, hydrous minerals, such as amphibole and serpentine, which would signal the existence of past or present water, can have observable characteristics in both low-resolution spectroscopy observations (with the precision of 5 eclipses) and the integrated fluxes over mid-infrared instrument filter bandwidths (20–100 eclipses). Photometric fluxes are also sensitive to bulk compositions (for example, wt% Al<sub>2</sub>O<sub>3</sub>), which reflect magmatic processes. Our work demonstrates the potential for the James Webb Space Telescope and future observatories to access a fuller picture of exoplanet surface geology.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"10 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-024-02412-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
The James Webb Space Telescope can potentially explore the geological diversity of the surfaces of rocky exoplanets, especially due to its access to mid-infrared wavelengths. Here we investigate the level of geological detail that it could be possible to observe with the low-resolution spectroscopy and photometric modes of the mid-infrared instrument onboard the James Webb Space Telescope. We used new emissivity measurements of 15 basaltic samples between 2 μm and 25 μm to produce synthetic spectra and photometric fluxes. We found that the mid-infrared instrument can, in principle, distinguish several specific mineralogical and bulk chemical signals among relatively similar rocks. In particular, hydrous minerals, such as amphibole and serpentine, which would signal the existence of past or present water, can have observable characteristics in both low-resolution spectroscopy observations (with the precision of 5 eclipses) and the integrated fluxes over mid-infrared instrument filter bandwidths (20–100 eclipses). Photometric fluxes are also sensitive to bulk compositions (for example, wt% Al2O3), which reflect magmatic processes. Our work demonstrates the potential for the James Webb Space Telescope and future observatories to access a fuller picture of exoplanet surface geology.
期刊介绍:
The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.