{"title":"Crystalline Electrolyte Boosts High Performance of All-Solid-State Lithium-Ion Batteries","authors":"Junfeng Luo, Yi Chang, Jing-Wen Shi, Xiaojin Wang, Haiqi Huang, Yuanyuan Zhang, Xiaowei Wang, Jiafeng Zhang, Yu-Xi Huang, Ruirui Zhao","doi":"10.1021/acs.nanolett.4c03874","DOIUrl":null,"url":null,"abstract":"The rigid solid–solid contact at the interface between the solid electrolyte and electrodes in full-solid-state lithium-ion batteries (ASSBs) presents a considerable challenge to lithium ion transport. To address this, we propose using Li-concentrated succinonitrile (Li-SN45) as an efficient bilateral interface modifier in ASSBs. This material boasts exceptional ionic conductivity of 3.38 mS cm<sup>–1</sup> and excellent corrosion resistance to the Li metal anode. The assembled ASSBs using layered cathodes and Li metal demonstrate outstanding discharge capacity (170 mAh g<sup>–1</sup> @ 20 mA g<sup>–1</sup>) and superior long-term cycling performance (97% capacity retention after 100 cycles). MALDI-TOF results suggest the formation of a crystalline structure in Li-SN45, which facilitates smooth “anion-free” Li<sup>+</sup> hopping paths assisted by the oxygen atoms, as revealed by the solved crystal structure. Our findings enriched the understanding of Li transport dynamics in electrolytes of ASSBs, paving the way to designing superior next-generation ASSBs with fast Li transport.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03874","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rigid solid–solid contact at the interface between the solid electrolyte and electrodes in full-solid-state lithium-ion batteries (ASSBs) presents a considerable challenge to lithium ion transport. To address this, we propose using Li-concentrated succinonitrile (Li-SN45) as an efficient bilateral interface modifier in ASSBs. This material boasts exceptional ionic conductivity of 3.38 mS cm–1 and excellent corrosion resistance to the Li metal anode. The assembled ASSBs using layered cathodes and Li metal demonstrate outstanding discharge capacity (170 mAh g–1 @ 20 mA g–1) and superior long-term cycling performance (97% capacity retention after 100 cycles). MALDI-TOF results suggest the formation of a crystalline structure in Li-SN45, which facilitates smooth “anion-free” Li+ hopping paths assisted by the oxygen atoms, as revealed by the solved crystal structure. Our findings enriched the understanding of Li transport dynamics in electrolytes of ASSBs, paving the way to designing superior next-generation ASSBs with fast Li transport.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.