{"title":"Exploring the Potential and Hurdles of Perovskite Solar Cells with p-i-n Structure","authors":"Chunlei Zhang, Zexin Yu, Bo Li, Xintong Li, Danpeng Gao, Xin Wu, Zonglong Zhu","doi":"10.1021/acsnano.4c11866","DOIUrl":null,"url":null,"abstract":"The p-i-n architecture within perovskite solar cells (PSCs) is swiftly transitioning from an alternative concept to the forefront of perovskite photovoltaic technology, driven by significant advancements in performance and suitability for tandem solar cell integration. The relentless pursuit to increase efficiencies and understand the factors contributing to instability has yielded notable strategies for enhancing p-i-n PSC performance. Chief among these is the advancement in passivation techniques, including the application of self-assembled monolayers (SAMs), which have proven central to mitigating interface-related inefficiencies. This Perspective delves into a curated selection of recent impactful studies on p-i-n PSCs, focusing on the latest material developments, device architecture refinements, and performance optimization tactics. We particularly emphasize the strides made in passivation and interfacial engineering. Furthermore, we explore the strides and potential of p-i-n structured perovskite tandem solar cells. The Perspective culminates in a discussion of the persistent challenges facing p-i-n PSCs, such as long-term stability, scalability, and the pursuit of environmentally benign solutions, setting the stage for future research directives.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11866","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The p-i-n architecture within perovskite solar cells (PSCs) is swiftly transitioning from an alternative concept to the forefront of perovskite photovoltaic technology, driven by significant advancements in performance and suitability for tandem solar cell integration. The relentless pursuit to increase efficiencies and understand the factors contributing to instability has yielded notable strategies for enhancing p-i-n PSC performance. Chief among these is the advancement in passivation techniques, including the application of self-assembled monolayers (SAMs), which have proven central to mitigating interface-related inefficiencies. This Perspective delves into a curated selection of recent impactful studies on p-i-n PSCs, focusing on the latest material developments, device architecture refinements, and performance optimization tactics. We particularly emphasize the strides made in passivation and interfacial engineering. Furthermore, we explore the strides and potential of p-i-n structured perovskite tandem solar cells. The Perspective culminates in a discussion of the persistent challenges facing p-i-n PSCs, such as long-term stability, scalability, and the pursuit of environmentally benign solutions, setting the stage for future research directives.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.