Dan I. Piraner, Mohamad H. Abedi, Maria J. Duran Gonzalez, Adam Chazin-Gray, Annie Lin, Iowis Zhu, Pavithran T. Ravindran, Thomas Schlichthaerle, Buwei Huang, Tyler H. Bearchild, David Lee, Sarah Wyman, Young-wook Jun, David Baker, Kole T. Roybal
{"title":"Engineered receptors for soluble cellular communication and disease sensing","authors":"Dan I. Piraner, Mohamad H. Abedi, Maria J. Duran Gonzalez, Adam Chazin-Gray, Annie Lin, Iowis Zhu, Pavithran T. Ravindran, Thomas Schlichthaerle, Buwei Huang, Tyler H. Bearchild, David Lee, Sarah Wyman, Young-wook Jun, David Baker, Kole T. Roybal","doi":"10.1038/s41586-024-08366-0","DOIUrl":null,"url":null,"abstract":"<p>Despite recent advances in mammalian synthetic biology, there remains a lack of modular synthetic receptors that can robustly respond to soluble ligands and in turn activate bespoke cellular functions. Such receptors would have extensive clinical potential to regulate the activity of engineered therapeutic cells, but to date only receptors against cell surface targets have approached clinical translation<sup>1</sup>. To address this gap, we developed a receptor architecture called synthetic intramembrane proteolysis receptor (SNIPR), that has the added ability to be activated by soluble ligands, both natural and synthetic, with remarkably low baseline activity and high fold activation, through an endocytic, pH-dependent cleavage mechanism. We demonstrate the therapeutic capabilities of the receptor platform by localizing the activity of CAR T cells to solid tumors where soluble disease-associated factors are expressed, bypassing the major hurdle of on-target off-tumor toxicity in bystander organs. We further applied the SNIPR platform to engineer fully synthetic signaling networks between cells orthogonal to natural signaling pathways, expanding the scope of synthetic biology. Our design framework enables cellular communication and environmental interactions, extending the capabilities of synthetic cellular networking in clinical and research contexts.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08366-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite recent advances in mammalian synthetic biology, there remains a lack of modular synthetic receptors that can robustly respond to soluble ligands and in turn activate bespoke cellular functions. Such receptors would have extensive clinical potential to regulate the activity of engineered therapeutic cells, but to date only receptors against cell surface targets have approached clinical translation1. To address this gap, we developed a receptor architecture called synthetic intramembrane proteolysis receptor (SNIPR), that has the added ability to be activated by soluble ligands, both natural and synthetic, with remarkably low baseline activity and high fold activation, through an endocytic, pH-dependent cleavage mechanism. We demonstrate the therapeutic capabilities of the receptor platform by localizing the activity of CAR T cells to solid tumors where soluble disease-associated factors are expressed, bypassing the major hurdle of on-target off-tumor toxicity in bystander organs. We further applied the SNIPR platform to engineer fully synthetic signaling networks between cells orthogonal to natural signaling pathways, expanding the scope of synthetic biology. Our design framework enables cellular communication and environmental interactions, extending the capabilities of synthetic cellular networking in clinical and research contexts.
尽管哺乳动物合成生物学取得了最新进展,但仍缺乏能对可溶性配体做出强有力反应并进而激活特定细胞功能的模块化合成受体。这种受体在调节工程治疗细胞的活性方面具有广泛的临床潜力,但迄今为止,只有针对细胞表面靶点的受体已接近临床转化1。为了填补这一空白,我们开发了一种被称为合成膜内蛋白水解受体(SNIPR)的受体结构,这种受体具有被可溶性配体(包括天然配体和合成配体)激活的附加能力,通过内细胞pH依赖性裂解机制,具有显著的低基线活性和高激活折叠。我们通过将 CAR T 细胞的活性定位到表达可溶性疾病相关因子的实体瘤上,证明了该受体平台的治疗能力,从而绕过了在旁观器官中的靶向非肿瘤毒性这一主要障碍。我们进一步应用 SNIPR 平台,在细胞之间设计出与自然信号通路正交的全合成信号网络,从而扩大了合成生物学的范围。我们的设计框架实现了细胞通信和环境互动,拓展了合成细胞网络在临床和研究方面的能力。
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.