Genetic and Habitat Rescue Improve Population Viability in Self-Incompatible Plants

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2024-11-08 DOI:10.1111/eva.70037
Francisco Encinas-Viso, Peter H. Thrall, Andrew G. Young
{"title":"Genetic and Habitat Rescue Improve Population Viability in Self-Incompatible Plants","authors":"Francisco Encinas-Viso,&nbsp;Peter H. Thrall,&nbsp;Andrew G. Young","doi":"10.1111/eva.70037","DOIUrl":null,"url":null,"abstract":"<p>Habitat fragmentation and the acceleration of environmental change threaten the survival of many plant species. The problem is especially pronounced for plant species with self-incompatibility mating systems, which are obligate outcrossers, thus requiring high mate availability to persist. In such situations, plant populations suffering decreased fitness could be rescued by: (a) improving local habitat conditions (habitat rescue), (b) increasing the number of individuals (demographic rescue), or (c) introducing new genetic variation (genetic rescue). In this study, we used a spatially and genetically explicit individual-based model to approximate the demography of a small (<i>N</i> = 250) isolated self-incompatible population using a timescale of 500 years. Using this model, we quantified the effectiveness of the different types of rescues described above, singly and in combination. Our results show that individual genetic rescue is the most effective type of rescue with respect to improving fitness and population viability. However, we found that introducing a high number of individuals (<i>N</i> &gt; 30) to a small population (<i>N</i> = 50) at the brink of extinction through demographic rescue can also have a positive effect on viability, improving average fitness by 55% compared to introducing a low number of individuals (<i>N</i> = 10) over a long timescale (&gt; 500 years). By itself, habitat rescue showed the lowest effects on viability. However, combining genetic and habitat rescue provided the best results overall, increasing both persistence (&gt; 30%) and mate availability (&gt; 50%). Interestingly, we found that the addition of even a small number of new S alleles (20%) can be highly beneficial to increase mate availability and persistence. We conclude that genetic rescue through the introduction of new S alleles and an increase in habitat suitability is the best management strategy to improve mate availability and population viability of small isolated SI plant populations to overcome the effects of demographic stochasticity and positive density dependence.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70037","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Habitat fragmentation and the acceleration of environmental change threaten the survival of many plant species. The problem is especially pronounced for plant species with self-incompatibility mating systems, which are obligate outcrossers, thus requiring high mate availability to persist. In such situations, plant populations suffering decreased fitness could be rescued by: (a) improving local habitat conditions (habitat rescue), (b) increasing the number of individuals (demographic rescue), or (c) introducing new genetic variation (genetic rescue). In this study, we used a spatially and genetically explicit individual-based model to approximate the demography of a small (N = 250) isolated self-incompatible population using a timescale of 500 years. Using this model, we quantified the effectiveness of the different types of rescues described above, singly and in combination. Our results show that individual genetic rescue is the most effective type of rescue with respect to improving fitness and population viability. However, we found that introducing a high number of individuals (N > 30) to a small population (N = 50) at the brink of extinction through demographic rescue can also have a positive effect on viability, improving average fitness by 55% compared to introducing a low number of individuals (N = 10) over a long timescale (> 500 years). By itself, habitat rescue showed the lowest effects on viability. However, combining genetic and habitat rescue provided the best results overall, increasing both persistence (> 30%) and mate availability (> 50%). Interestingly, we found that the addition of even a small number of new S alleles (20%) can be highly beneficial to increase mate availability and persistence. We conclude that genetic rescue through the introduction of new S alleles and an increase in habitat suitability is the best management strategy to improve mate availability and population viability of small isolated SI plant populations to overcome the effects of demographic stochasticity and positive density dependence.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因和生境拯救提高了自交不亲和植物种群的生存能力。
栖息地的破碎化和环境变化的加速威胁着许多植物物种的生存。对于具有自交不亲和交配系统的植物物种来说,这个问题尤为突出,因为这些物种是强制性外交动物,因此需要有大量的配偶才能生存下去。在这种情况下,可以通过以下方法拯救健康状况下降的植物种群:(a) 改善当地的生境条件(生境拯救),(b) 增加个体数量(人口拯救),或 (c) 引入新的遗传变异(遗传拯救)。在这项研究中,我们使用了一个基于个体的空间和遗传显式模型,以 500 年的时间尺度来近似计算一个小型(N = 250)孤立自相容种群的人口统计。利用该模型,我们对上述不同类型的拯救措施(单独或组合)的有效性进行了量化。我们的研究结果表明,就提高适应性和种群存活率而言,个体基因拯救是最有效的拯救类型。然而,我们发现,通过人口救援为一个濒临灭绝的小种群(N = 50)引入大量个体(N > 30)也能对生存能力产生积极影响,与引入少量个体(N = 10)相比,在较长的时间尺度内(> 500 年),平均适应性提高了 55%。栖息地拯救本身对生存能力的影响最小。然而,将基因拯救和栖息地拯救结合在一起,总体效果最好,持续性(> 30%)和配偶可用性(> 50%)都有所提高。有趣的是,我们发现,即使增加少量新的 S 等位基因(20%),对提高交配率和持续性也非常有益。我们的结论是,通过引入新的 S 等位基因和提高栖息地适宜性来进行遗传拯救,是提高小型孤立 SI 植物种群的配偶可得性和种群存活率以克服人口随机性和正密度依赖性影响的最佳管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Tracking the North American Asian Longhorned Beetle Invasion With Genomics Prioritizing Conservation Areas for the Hyacinth Macaw (Anodorhynchus hyacinthinus) in Brazil From Low-Coverage Genomic Data Genomic Data Support the Revision of Provenance Regions Delimitation for Scots Pine Sex Pheromone Mediates Resource Partitioning Between Drosophila melanogaster and D. suzukii Estimating Demographic Parameters for Bearded Seals, Erignathus barbatus, in Alaska Using Close-Kin Mark-Recapture Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1