Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.)

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2025-02-06 DOI:10.1111/eva.70076
Felix Zimmermann, Oliver Reutimann, Andri Baltensweiler, Lorenz Walthert, Jill K. Olofsson, Christian Rellstab
{"title":"Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.)","authors":"Felix Zimmermann,&nbsp;Oliver Reutimann,&nbsp;Andri Baltensweiler,&nbsp;Lorenz Walthert,&nbsp;Jill K. Olofsson,&nbsp;Christian Rellstab","doi":"10.1111/eva.70076","DOIUrl":null,"url":null,"abstract":"<p>Although many tree species frequently hybridize and backcross, management decisions in forestry and nature conservation are usually concentrated on pure species. Therefore, understanding which environmental factors drive the distribution and admixture of tree species on a local stand scale is of great interest to support decision-making in the establishment and management of resilient forests. Here, we extensively sampled a mixed stand of hybridizing white oaks (<i>Quercus petraea</i> and <i>Q. pubescens</i>) near Lake Neuchâtel (Switzerland), where limestone and glacier moraine geologies coexist in proximity, to test whether micro-environmental conditions can predict taxonomic distribution and genetic admixture. We collected DNA from bud tissue, individual soil samples, and extracted high-resolution topographic data for 385 oak trees. We used 50 species-discriminatory single nucleotide polymorphism (SNP) markers to determine the taxonomic composition and admixture levels of individual trees and tested their association with micro-environmental conditions. We show that the trees' taxonomic distribution can be explained mainly by geographic position, soil pH, and potential rooting depth, a proxy for soil water availability. We found that admixed individuals tend to grow in habitats that are characteristic of the more drought-tolerant species <i>Q. pubescens</i> rather than in intermediate habitats. Using in situ measurements, we are the first to show that fine-scale variation in soil properties related to pH and water availability potentially drives the distribution of hybridizing tree species in a mixed stand. Microenvironmental variation therefore promotes local taxonomic diversity, facilitates admixture and adaptive introgression, and contributes to the resilience of forests under environmental change. Consequently, species such as white oaks should be managed and protected as a species complex rather than as pure species.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although many tree species frequently hybridize and backcross, management decisions in forestry and nature conservation are usually concentrated on pure species. Therefore, understanding which environmental factors drive the distribution and admixture of tree species on a local stand scale is of great interest to support decision-making in the establishment and management of resilient forests. Here, we extensively sampled a mixed stand of hybridizing white oaks (Quercus petraea and Q. pubescens) near Lake Neuchâtel (Switzerland), where limestone and glacier moraine geologies coexist in proximity, to test whether micro-environmental conditions can predict taxonomic distribution and genetic admixture. We collected DNA from bud tissue, individual soil samples, and extracted high-resolution topographic data for 385 oak trees. We used 50 species-discriminatory single nucleotide polymorphism (SNP) markers to determine the taxonomic composition and admixture levels of individual trees and tested their association with micro-environmental conditions. We show that the trees' taxonomic distribution can be explained mainly by geographic position, soil pH, and potential rooting depth, a proxy for soil water availability. We found that admixed individuals tend to grow in habitats that are characteristic of the more drought-tolerant species Q. pubescens rather than in intermediate habitats. Using in situ measurements, we are the first to show that fine-scale variation in soil properties related to pH and water availability potentially drives the distribution of hybridizing tree species in a mixed stand. Microenvironmental variation therefore promotes local taxonomic diversity, facilitates admixture and adaptive introgression, and contributes to the resilience of forests under environmental change. Consequently, species such as white oaks should be managed and protected as a species complex rather than as pure species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Issue Information Genetic Architecture Underlying Response to the Fungal Pathogen Dothistroma septosporum in Lodgepole Pine, Jack Pine, and Their Hybrids Genomic Monitoring of a Reintroduced Butterfly Uncovers Contrasting Founder Lineage Survival Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.) Climate-Associated Genetic Variation and Projected Genetic Offsets for Cryptomeria japonica D. Don Under Future Climate Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1