Climate-Associated Genetic Variation and Projected Genetic Offsets for Cryptomeria japonica D. Don Under Future Climate Scenarios

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2025-02-06 DOI:10.1111/eva.70077
Kentaro Uchiyama, Tokuko Ujino-Ihara, Katsuhiro Nakao, Jumpei Toriyama, Shoji Hashimoto, Yoshihiko Tsumura
{"title":"Climate-Associated Genetic Variation and Projected Genetic Offsets for Cryptomeria japonica D. Don Under Future Climate Scenarios","authors":"Kentaro Uchiyama,&nbsp;Tokuko Ujino-Ihara,&nbsp;Katsuhiro Nakao,&nbsp;Jumpei Toriyama,&nbsp;Shoji Hashimoto,&nbsp;Yoshihiko Tsumura","doi":"10.1111/eva.70077","DOIUrl":null,"url":null,"abstract":"<p>Revealing the spatial distribution of adaptive genetic variation is both a challenging and crucial task in evolutionary ecology, essential for understanding local adaptation within species, and in management, for predicting species responses to future climate change. This understanding is particularly important for long-lived tree species, which may not be able to migrate quickly enough to adapt to rapid climate changes and may need to rely on their standing genetic variation. In this study, we focused on <i>Cryptomeria japonica</i>, a major component of Japan's temperate forests and an important forestry species adapted to the humid environment of monsoon Asia. We extracted climate-associated genetic variation from the entire genome and evaluated its distribution and vulnerability under future climate scenarios using spatial modeling techniques. We analyzed 31,676 high-quality SNPs from 249 individuals across 22 natural populations of <i>C. japonica</i>, covering its entire distribution range. We identified 239 candidate climate-associated SNPs and found winter temperature, summer precipitation, and winter precipitation as the most significant factors explaining the genetic variation in these SNPs. The climate-associated genetic variation deviated from non-associated (neutral) genetic variation in the opposite (the Sea of Japan and Pacific Ocean) sides of Japanese archipelago, suggesting natural selection of different climate conditions in these regions. Difference in estimated allele frequency at the climate-associated loci (genetic offset) between the present and future (2090 in the SSP5-8.5 scenario) climate conditions was predicted to be larger in three areas (not only southwestern Japan but also coastal area on the Sea of Japan side and inland area on the Pacific Ocean side in northeastern Japan). This prediction implies the discrepancy between standing genetic variation at the present and that adaptive to the future climate in these areas, which underscores the necessity for proactive management to adjust the adaptive genetic variation.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70077","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Revealing the spatial distribution of adaptive genetic variation is both a challenging and crucial task in evolutionary ecology, essential for understanding local adaptation within species, and in management, for predicting species responses to future climate change. This understanding is particularly important for long-lived tree species, which may not be able to migrate quickly enough to adapt to rapid climate changes and may need to rely on their standing genetic variation. In this study, we focused on Cryptomeria japonica, a major component of Japan's temperate forests and an important forestry species adapted to the humid environment of monsoon Asia. We extracted climate-associated genetic variation from the entire genome and evaluated its distribution and vulnerability under future climate scenarios using spatial modeling techniques. We analyzed 31,676 high-quality SNPs from 249 individuals across 22 natural populations of C. japonica, covering its entire distribution range. We identified 239 candidate climate-associated SNPs and found winter temperature, summer precipitation, and winter precipitation as the most significant factors explaining the genetic variation in these SNPs. The climate-associated genetic variation deviated from non-associated (neutral) genetic variation in the opposite (the Sea of Japan and Pacific Ocean) sides of Japanese archipelago, suggesting natural selection of different climate conditions in these regions. Difference in estimated allele frequency at the climate-associated loci (genetic offset) between the present and future (2090 in the SSP5-8.5 scenario) climate conditions was predicted to be larger in three areas (not only southwestern Japan but also coastal area on the Sea of Japan side and inland area on the Pacific Ocean side in northeastern Japan). This prediction implies the discrepancy between standing genetic variation at the present and that adaptive to the future climate in these areas, which underscores the necessity for proactive management to adjust the adaptive genetic variation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Issue Information Genetic Architecture Underlying Response to the Fungal Pathogen Dothistroma septosporum in Lodgepole Pine, Jack Pine, and Their Hybrids Genomic Monitoring of a Reintroduced Butterfly Uncovers Contrasting Founder Lineage Survival Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.) Climate-Associated Genetic Variation and Projected Genetic Offsets for Cryptomeria japonica D. Don Under Future Climate Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1