Christophe Pauly, Lisa Schlichter, Bart Jan Ravoo, Armido Studer
{"title":"Sonochemical Nitroxide-Mediated Polymerization: Harnessing Sonochemistry for Polymer Synthesis.","authors":"Christophe Pauly, Lisa Schlichter, Bart Jan Ravoo, Armido Studer","doi":"10.1002/marc.202400732","DOIUrl":null,"url":null,"abstract":"<p><p>In polymer science, mechanochemistry is emerging as a powerful tool for materials science and molecular synthesis, offering novel avenues for controlled polymerization and post-synthetic modification. Building upon the previous research, nitroxide-mediated polymerization (NMP) is merged with mechanochemistry through the design of nitroxide-based mechanophore macroinitiators, pioneering the first instance of a sonochemical nitroxide-mediated-type polymerization. As NMP usually requires high temperatures, this study demonstrates that a sonochemical NMP-type process allows polymerization under reduced temperatures down to 55 °C. Moreover, depending on the nature of the employed monomers, gelated networks are obtained, demonstrating the adaptability of the mechanophore system. This study elucidates the potential of mechanochemistry in polymer synthesis, offering insights into manipulating polymerization kinetics and advancing materials science applications.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400732"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400732","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In polymer science, mechanochemistry is emerging as a powerful tool for materials science and molecular synthesis, offering novel avenues for controlled polymerization and post-synthetic modification. Building upon the previous research, nitroxide-mediated polymerization (NMP) is merged with mechanochemistry through the design of nitroxide-based mechanophore macroinitiators, pioneering the first instance of a sonochemical nitroxide-mediated-type polymerization. As NMP usually requires high temperatures, this study demonstrates that a sonochemical NMP-type process allows polymerization under reduced temperatures down to 55 °C. Moreover, depending on the nature of the employed monomers, gelated networks are obtained, demonstrating the adaptability of the mechanophore system. This study elucidates the potential of mechanochemistry in polymer synthesis, offering insights into manipulating polymerization kinetics and advancing materials science applications.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.