Marc Arnau, Júlia Sanz, Pau Turon, Carlos Alemán, Jordi Sans
{"title":"Green Synthesis of Urea from Carbon Dioxide and Ammonia Catalyzed by Ultraporous Permanently Polarized Hydroxyapatite.","authors":"Marc Arnau, Júlia Sanz, Pau Turon, Carlos Alemán, Jordi Sans","doi":"10.1002/cplu.202400705","DOIUrl":null,"url":null,"abstract":"<p><p>The sustainable synthesis of urea from ammonia (NH3) and carbon dioxide (CO2) using ultraporous permanently polarized hydroxyapatite (upp-HAp) as catalyst has been explored as an advantageous CO2-revalorization strategy. As the simultaneous activation of N2 and CO2 (single-step) demands an increase of the reaction conditions, we have re-visited the industrial two-step Bazarov reaction. upp-HAp has been designed as a stable multifunctional catalyst capable of promoting both CO2 and NH3 adsorption for their subsequent C-N bond formation. Herein we report the synthesis of 1 mmol/gcat of urea with a selectivity of 97% under strictly mild conditions (95-120 ºC and 1 bar of CO2; without applying any electrical currents or UV irradiation) which represents an efficiency of ~2% and ~30% with respect to the NH3 and CO2 content, respectively. The study of the NH3 content, products adsorbed in the catalyst, presence of intermediates and temperature of the reaction allows unveiling the great potential of upp-HAp as a green catalyst for sustainable Bazarov reactions. Results suggest that the double-step approach could be more advantageous for both synthesizing urea and as a CO2-revalorization strategy, which in turn promotes the development of specific technologies for the independent synthesis of green NH3.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400705"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400705","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The sustainable synthesis of urea from ammonia (NH3) and carbon dioxide (CO2) using ultraporous permanently polarized hydroxyapatite (upp-HAp) as catalyst has been explored as an advantageous CO2-revalorization strategy. As the simultaneous activation of N2 and CO2 (single-step) demands an increase of the reaction conditions, we have re-visited the industrial two-step Bazarov reaction. upp-HAp has been designed as a stable multifunctional catalyst capable of promoting both CO2 and NH3 adsorption for their subsequent C-N bond formation. Herein we report the synthesis of 1 mmol/gcat of urea with a selectivity of 97% under strictly mild conditions (95-120 ºC and 1 bar of CO2; without applying any electrical currents or UV irradiation) which represents an efficiency of ~2% and ~30% with respect to the NH3 and CO2 content, respectively. The study of the NH3 content, products adsorbed in the catalyst, presence of intermediates and temperature of the reaction allows unveiling the great potential of upp-HAp as a green catalyst for sustainable Bazarov reactions. Results suggest that the double-step approach could be more advantageous for both synthesizing urea and as a CO2-revalorization strategy, which in turn promotes the development of specific technologies for the independent synthesis of green NH3.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.