Robust model averaging approach by Mallows-type criterion.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae128
Miaomiao Wang, Kang You, Lixing Zhu, Guohua Zou
{"title":"Robust model averaging approach by Mallows-type criterion.","authors":"Miaomiao Wang, Kang You, Lixing Zhu, Guohua Zou","doi":"10.1093/biomtc/ujae128","DOIUrl":null,"url":null,"abstract":"<p><p>Model averaging is an important tool for treating uncertainty from model selection process and fusing information from different models, and has been widely used in various fields. However, the most existing model averaging criteria are proposed based on the methods of ordinary least squares or maximum likelihood, which possess high sensitivity to outliers or violation of certain model assumption. For the mean regression, no optimal robust methods are developed. To fill this gap, in our paper, we propose an outlier-robust model averaging approach by Mallows-type criterion. The idea is that we first construct a generalized M (GM) estimator for each candidate model, and then build robust weighting schemes by the asymptotic expansion of the final prediction error based on the GM-type loss function. So, we can still achieve a trustworthy result even if the dataset is contaminated by outliers in response and/or covariates. Asymptotic properties of the proposed robust model averaging estimators are established under some regularity conditions. The consistency of our weight estimators tending to the theoretically optimal weight vectors is also derived. We prove that our model averaging estimator is robust in terms of having bounded influence function. Further, we define the empirical prediction influence function to evaluate the quantitative robustness of the model averaging estimator. A simulation study and a real data analysis are conducted to demonstrate the finite sample performance of our estimators and compare them with other commonly used model selection and averaging methods.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae128","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Model averaging is an important tool for treating uncertainty from model selection process and fusing information from different models, and has been widely used in various fields. However, the most existing model averaging criteria are proposed based on the methods of ordinary least squares or maximum likelihood, which possess high sensitivity to outliers or violation of certain model assumption. For the mean regression, no optimal robust methods are developed. To fill this gap, in our paper, we propose an outlier-robust model averaging approach by Mallows-type criterion. The idea is that we first construct a generalized M (GM) estimator for each candidate model, and then build robust weighting schemes by the asymptotic expansion of the final prediction error based on the GM-type loss function. So, we can still achieve a trustworthy result even if the dataset is contaminated by outliers in response and/or covariates. Asymptotic properties of the proposed robust model averaging estimators are established under some regularity conditions. The consistency of our weight estimators tending to the theoretically optimal weight vectors is also derived. We prove that our model averaging estimator is robust in terms of having bounded influence function. Further, we define the empirical prediction influence function to evaluate the quantitative robustness of the model averaging estimator. A simulation study and a real data analysis are conducted to demonstrate the finite sample performance of our estimators and compare them with other commonly used model selection and averaging methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用 Mallows 型标准的稳健模型平均法。
模型平均法是处理模型选择过程中的不确定性和融合不同模型信息的重要工具,已被广泛应用于各个领域。然而,现有的模型平均准则大多是基于普通最小二乘法或最大似然法提出的,对异常值或违反某些模型假设具有较高的敏感性。对于均值回归,还没有开发出最优的稳健方法。为了填补这一空白,我们在本文中提出了一种采用 Mallows 型准则的离群稳健模型平均方法。其思路是,我们首先为每个候选模型构建一个广义 M(GM)估计器,然后基于 GM 型损失函数,通过最终预测误差的渐近展开建立稳健加权方案。因此,即使数据集受到响应和/或协变量异常值的污染,我们仍然可以获得值得信赖的结果。在一些正则条件下,建立了所提出的稳健模型平均估计器的渐近特性。我们还推导出了趋向于理论最优权重向量的权重估计器的一致性。我们证明了我们的模型平均估计器在有界影响函数方面是稳健的。此外,我们还定义了经验预测影响函数,以评估模型平均估计器的定量稳健性。我们进行了模拟研究和实际数据分析,以证明我们的估计器的有限样本性能,并将其与其他常用的模型选择和平均方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Bayesian pathway analysis over brain network mediators for survival data. Robust model averaging approach by Mallows-type criterion. Bayesian inference for multivariate probit model with latent envelope. Absolute risk from double nested case-control designs: cause-specific proportional hazards models with and without augmented estimating equations. Nonparametric receiver operating characteristic curve analysis with an imperfect gold standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1