{"title":"A <sup>18</sup>F-FDG PET/CT-based deep learning-radiomics-clinical model for prediction of cervical lymph node metastasis in esophageal squamous cell carcinoma.","authors":"Ping Yuan, Zhen-Hao Huang, Yun-Hai Yang, Fei-Chao Bao, Ke Sun, Fang-Fang Chao, Ting-Ting Liu, Jing-Jing Zhang, Jin-Ming Xu, Xiang-Nan Li, Feng Li, Tao Ma, Hao Li, Zi-Hao Li, Shan-Feng Zhang, Jian Hu, Yu Qi","doi":"10.1186/s40644-024-00799-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To develop an artificial intelligence (AI)-based model using Radiomics, deep learning (DL) features extracted from <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) Positron emission tomography/Computed Tomography (PET/CT) images of tumor and cervical lymph node with clinical feature for predicting cervical lymph node metastasis (CLNM) in patients with esophageal squamous cell carcinoma (ESCC).</p><p><strong>Methods: </strong>The study included 300 ESCC patients from the First Affiliated Hospital of Zhengzhou University who were divided into a training cohort and an internal testing cohort with an 8:2 ratio. Another 111 patients from Shanghai Chest Hospital were included as the external cohort. For each sample, we extracted 428 PET/CT-based Radiomics features from the gross tumor volume (GTV) and cervical lymph node (CLN) delineated layer by layer and 256 PET/CT-based DL features from the maximum cross-section of GTV and CLN images We input these features into seven different machine learning algorithms and ultimately selected logistic regression (LR) as the model classifier. Subsequently, we evaluated seven models (Clinical, Radiomics, Radiomics-Clinical, DL-Clinical, DL-Radiomics, DL-Radiomics-Clinical) using Radiomics features, DL features and clinical feature.</p><p><strong>Results: </strong>The DL-Radiomics-Clinical (DRC) model demonstrated higher AUC of 0.955 and 0.916 compared to the other six models in both internal and external testing cohorts respectively. The DRC model achieved the highest accuracy among the seven models in both the internal and external test sets, with scores of 0.951 and 0.892, respectively.</p><p><strong>Conclusions: </strong>Through the combination of Radiomics features and DL features from PET/CT imaging and clinical feature, we developed a predictive model exhibiting exceptional classification capabilities. This model can be considered as a non-invasive method for predication of CLNM in patients with ESCC. It might facilitate decision-making regarding to the extend of lymph node dissection, and to select candidates for postoperative adjuvant therapy.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"24 1","pages":"153"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556142/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00799-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To develop an artificial intelligence (AI)-based model using Radiomics, deep learning (DL) features extracted from 18F-fluorodeoxyglucose (18F-FDG) Positron emission tomography/Computed Tomography (PET/CT) images of tumor and cervical lymph node with clinical feature for predicting cervical lymph node metastasis (CLNM) in patients with esophageal squamous cell carcinoma (ESCC).
Methods: The study included 300 ESCC patients from the First Affiliated Hospital of Zhengzhou University who were divided into a training cohort and an internal testing cohort with an 8:2 ratio. Another 111 patients from Shanghai Chest Hospital were included as the external cohort. For each sample, we extracted 428 PET/CT-based Radiomics features from the gross tumor volume (GTV) and cervical lymph node (CLN) delineated layer by layer and 256 PET/CT-based DL features from the maximum cross-section of GTV and CLN images We input these features into seven different machine learning algorithms and ultimately selected logistic regression (LR) as the model classifier. Subsequently, we evaluated seven models (Clinical, Radiomics, Radiomics-Clinical, DL-Clinical, DL-Radiomics, DL-Radiomics-Clinical) using Radiomics features, DL features and clinical feature.
Results: The DL-Radiomics-Clinical (DRC) model demonstrated higher AUC of 0.955 and 0.916 compared to the other six models in both internal and external testing cohorts respectively. The DRC model achieved the highest accuracy among the seven models in both the internal and external test sets, with scores of 0.951 and 0.892, respectively.
Conclusions: Through the combination of Radiomics features and DL features from PET/CT imaging and clinical feature, we developed a predictive model exhibiting exceptional classification capabilities. This model can be considered as a non-invasive method for predication of CLNM in patients with ESCC. It might facilitate decision-making regarding to the extend of lymph node dissection, and to select candidates for postoperative adjuvant therapy.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.