Facial emotion recognition using deep quantum and advanced transfer learning mechanism.

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in Computational Neuroscience Pub Date : 2024-10-30 eCollection Date: 2024-01-01 DOI:10.3389/fncom.2024.1435956
Shtwai Alsubai, Abdullah Alqahtani, Abed Alanazi, Mohemmed Sha, Abdu Gumaei
{"title":"Facial emotion recognition using deep quantum and advanced transfer learning mechanism.","authors":"Shtwai Alsubai, Abdullah Alqahtani, Abed Alanazi, Mohemmed Sha, Abdu Gumaei","doi":"10.3389/fncom.2024.1435956","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Facial expressions have become a common way for interaction among humans. People cannot comprehend and predict the emotions or expressions of individuals through simple vision. Thus, in psychology, detecting facial expressions or emotion analysis demands an assessment and evaluation of decisions for identifying the emotions of a person or any group during communication. With the recent evolution of technology, AI (Artificial Intelligence) has gained significant usage, wherein DL (Deep Learning) based algorithms are employed for detecting facial expressions.</p><p><strong>Methods: </strong>The study proposes a system design that detects facial expressions by extracting relevant features using a Modified ResNet model. The proposed system stacks building-blocks with residual connections and employs an advanced extraction method with quantum computing, which significantly reduces computation time compared to conventional methods. The backbone stem utilizes a quantum convolutional layer comprised of several parameterized quantum-filters. Additionally, the research integrates residual connections in the ResNet-18 model with the Modified up Sampled Bottle Neck Process (MuS-BNP), retaining computational efficacy while benefiting from residual connections.</p><p><strong>Results: </strong>The proposed model demonstrates superior performance by overcoming the issue of maximum similarity within varied facial expressions. The system's ability to accurately detect and differentiate between expressions is measured using performance metrics such as accuracy, F1-score, recall, and precision.</p><p><strong>Discussion: </strong>This performance analysis confirms the efficacy of the proposed system, highlighting the advantages of quantum computing in feature extraction and the integration of residual connections. The model achieves quantum superiority, providing faster and more accurate computations compared to existing methodologies. The results suggest that the proposed approach offers a promising solution for facial expression recognition tasks, significantly improving both speed and accuracy.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1435956"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1435956","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Facial expressions have become a common way for interaction among humans. People cannot comprehend and predict the emotions or expressions of individuals through simple vision. Thus, in psychology, detecting facial expressions or emotion analysis demands an assessment and evaluation of decisions for identifying the emotions of a person or any group during communication. With the recent evolution of technology, AI (Artificial Intelligence) has gained significant usage, wherein DL (Deep Learning) based algorithms are employed for detecting facial expressions.

Methods: The study proposes a system design that detects facial expressions by extracting relevant features using a Modified ResNet model. The proposed system stacks building-blocks with residual connections and employs an advanced extraction method with quantum computing, which significantly reduces computation time compared to conventional methods. The backbone stem utilizes a quantum convolutional layer comprised of several parameterized quantum-filters. Additionally, the research integrates residual connections in the ResNet-18 model with the Modified up Sampled Bottle Neck Process (MuS-BNP), retaining computational efficacy while benefiting from residual connections.

Results: The proposed model demonstrates superior performance by overcoming the issue of maximum similarity within varied facial expressions. The system's ability to accurately detect and differentiate between expressions is measured using performance metrics such as accuracy, F1-score, recall, and precision.

Discussion: This performance analysis confirms the efficacy of the proposed system, highlighting the advantages of quantum computing in feature extraction and the integration of residual connections. The model achieves quantum superiority, providing faster and more accurate computations compared to existing methodologies. The results suggest that the proposed approach offers a promising solution for facial expression recognition tasks, significantly improving both speed and accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度量子和高级迁移学习机制进行面部情绪识别。
简介面部表情已成为人际交往的一种常见方式。人们无法通过简单的视觉来理解和预测个人的情绪或表情。因此,在心理学中,面部表情检测或情绪分析需要对决策进行评估和评价,以便在交流过程中识别一个人或任何群体的情绪。随着近年来技术的发展,人工智能(AI)得到了广泛应用,其中基于深度学习(DL)的算法被用于检测面部表情:本研究提出了一种系统设计,通过使用修改后的 ResNet 模型提取相关特征来检测面部表情。与传统方法相比,该系统采用先进的量子计算提取方法,大大减少了计算时间。主干利用由多个参数化量子滤波器组成的量子卷积层。此外,该研究还将 ResNet-18 模型中的残余连接与改进的上采样瓶颈过程(MuS-BNP)整合在一起,在保留计算效率的同时从残余连接中获益:结果:所提出的模型克服了不同面部表情中最大相似度的问题,表现出卓越的性能。使用准确率、F1 分数、召回率和精确度等性能指标衡量了系统准确检测和区分不同表情的能力:该性能分析证实了所提系统的功效,凸显了量子计算在特征提取和整合残差连接方面的优势。与现有方法相比,该模型实现了量子优势,提供了更快更准确的计算。结果表明,所提出的方法为面部表情识别任务提供了一种有前途的解决方案,大大提高了速度和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
期刊最新文献
Editorial: Computational modeling and machine learning methods in neurodevelopment and neurodegeneration: from basic research to clinical applications. Simulated synapse loss induces depression-like behaviors in deep reinforcement learning. Systematic review of cognitive impairment in drivers through mental workload using physiological measures of heart rate variability. Facial emotion recognition using deep quantum and advanced transfer learning mechanism. BrainNet: an automated approach for brain stress prediction utilizing electrodermal activity signal with XLNet model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1