SYNLAC prime probiotics enhances growth performance, and resistance of white shrimp, Penaeus vannamei to Enterocytozoon hepatopenaei and Vibrio alginollyticus: Insights into immune and metabolic pathway modulations
Ann-Chang Cheng , Hsiao-Tung Chang , Ting-Yu Lee , Jin-Seng Lin , Chun-Hung Liu
{"title":"SYNLAC prime probiotics enhances growth performance, and resistance of white shrimp, Penaeus vannamei to Enterocytozoon hepatopenaei and Vibrio alginollyticus: Insights into immune and metabolic pathway modulations","authors":"Ann-Chang Cheng , Hsiao-Tung Chang , Ting-Yu Lee , Jin-Seng Lin , Chun-Hung Liu","doi":"10.1016/j.fsi.2024.110016","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the impact of SYNLAC Prime probiotics on the growth performance, health status, and metabolic profile of white shrimp, <em>Penaeus vannamei</em>. Shrimp fed with the experimental diets, including the control diet without probiotic supplementation, and the diets supplemented with SYNLAC Prime probiotics at concentrations of 10<sup>5</sup> CFU (g diet)<sup>−1</sup> (P5) and 10<sup>6</sup> CFU (g diet)<sup>−1</sup> (P6) for 56 days. Results indicated a significant enhancement in growth performance in probiotic-treated shrimp relative to the control group, attributed to structural improvements in the digestive tract, particularly the increased abundances of B cells in the hepatopancreas. The administration of dietary probiotics markedly reduced the severity of <em>Enterocytozoon hepatopenaei</em> (EHP) infection and decreased cumulative mortalities following <em>Vibrio alginolyticus</em> challenge. Shrimp in the P6 group exhibited significant elevations in phenoloxidase activity, respiratory burst, lysozyme activity and phagocytic activity compared to control group. Furthermore, there was an upregulation of several immune-related genes in hepatopancreas, including serine protease (SP), prophenoloxidase (proPO) I, proPO II, and penaeidin 3a. Additionally, the expression of β-1, 3-glucan binding protein and SP mRNA was significantly increased in hemocytes. Untargeted metabolomics analysis using LC-MS/MS revealed significant changes in the hepatopancreas metabolic profile, highlighting alterations in energy metabolisms pathways, such as citrate cycle and nicotinate and nicotinamide metabolism, as well as amino acid metabolisms pathways including arginine and proline metabolism, taurine and hypotaurine metabolism, and histidine metabolism. These findings underscore the potential of SYNLAC Prime probiotics in enhancing shrimp growth, immune function, and metabolic pathways, offering valuable insights for advancing health management strategies in shrimp aquaculture.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"155 ","pages":"Article 110016"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464824006612","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the impact of SYNLAC Prime probiotics on the growth performance, health status, and metabolic profile of white shrimp, Penaeus vannamei. Shrimp fed with the experimental diets, including the control diet without probiotic supplementation, and the diets supplemented with SYNLAC Prime probiotics at concentrations of 105 CFU (g diet)−1 (P5) and 106 CFU (g diet)−1 (P6) for 56 days. Results indicated a significant enhancement in growth performance in probiotic-treated shrimp relative to the control group, attributed to structural improvements in the digestive tract, particularly the increased abundances of B cells in the hepatopancreas. The administration of dietary probiotics markedly reduced the severity of Enterocytozoon hepatopenaei (EHP) infection and decreased cumulative mortalities following Vibrio alginolyticus challenge. Shrimp in the P6 group exhibited significant elevations in phenoloxidase activity, respiratory burst, lysozyme activity and phagocytic activity compared to control group. Furthermore, there was an upregulation of several immune-related genes in hepatopancreas, including serine protease (SP), prophenoloxidase (proPO) I, proPO II, and penaeidin 3a. Additionally, the expression of β-1, 3-glucan binding protein and SP mRNA was significantly increased in hemocytes. Untargeted metabolomics analysis using LC-MS/MS revealed significant changes in the hepatopancreas metabolic profile, highlighting alterations in energy metabolisms pathways, such as citrate cycle and nicotinate and nicotinamide metabolism, as well as amino acid metabolisms pathways including arginine and proline metabolism, taurine and hypotaurine metabolism, and histidine metabolism. These findings underscore the potential of SYNLAC Prime probiotics in enhancing shrimp growth, immune function, and metabolic pathways, offering valuable insights for advancing health management strategies in shrimp aquaculture.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.