Danial Fatchurrahman, Federico Marini, Mojtaba Nosrati, Andrea Peruzzi, Sergio Castellano, Maria Luisa Amodio, Giancarlo Colelli
{"title":"The Potential Application of Visible-Near Infrared (Vis-NIR) Hyperspectral Imaging for Classifying Typical Defective Goji Berry (<i>Lycium barbarum</i> L.).","authors":"Danial Fatchurrahman, Federico Marini, Mojtaba Nosrati, Andrea Peruzzi, Sergio Castellano, Maria Luisa Amodio, Giancarlo Colelli","doi":"10.3390/foods13213469","DOIUrl":null,"url":null,"abstract":"<p><p>Goji berry is acknowledged for its notable medicinal attributes and elevated free radical scavenger properties. Nevertheless, its susceptibility to mechanical injuries and biological disorders reduces the commercial diffusion of the fruit. A hyperspectral imaging system (HSI) was employed to identify common defects in the Vis-NIR range (400-1000 nm). The sensorial evaluation of visual appearance was used to obtain the reference measurement of defects. A supervised classification model employing PLS-DA was developed using raw and pre-processed spectra, followed by applying a covariance selection algorithm (CovSel). The classification model demonstrated superior performance in two classifications distinguishing between sound and defective fruit, achieving an accuracy and sensitivity of 94.9% and 96.9%, respectively. However, when extended to a more complex task of classifying fruit into four categories, the model exhibited reliable results with an accuracy and sensitivity of 74.5% and 77.9%, respectively. These results indicate that a method based on hyperspectral visible-NIR can be implemented for rapid and reliable methods of online quality inspection securing high-quality goji berries.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545047/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13213469","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Goji berry is acknowledged for its notable medicinal attributes and elevated free radical scavenger properties. Nevertheless, its susceptibility to mechanical injuries and biological disorders reduces the commercial diffusion of the fruit. A hyperspectral imaging system (HSI) was employed to identify common defects in the Vis-NIR range (400-1000 nm). The sensorial evaluation of visual appearance was used to obtain the reference measurement of defects. A supervised classification model employing PLS-DA was developed using raw and pre-processed spectra, followed by applying a covariance selection algorithm (CovSel). The classification model demonstrated superior performance in two classifications distinguishing between sound and defective fruit, achieving an accuracy and sensitivity of 94.9% and 96.9%, respectively. However, when extended to a more complex task of classifying fruit into four categories, the model exhibited reliable results with an accuracy and sensitivity of 74.5% and 77.9%, respectively. These results indicate that a method based on hyperspectral visible-NIR can be implemented for rapid and reliable methods of online quality inspection securing high-quality goji berries.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds