{"title":"Nitric oxide-releasing self-healing hydrogel for antibacterial and antibiofilm efficacy against polymicrobial infection.","authors":"Nurhasni Hasan, Widya Luthfiyah, Juliana Palungan, Muneeb Ullah, Apon Zaenal Mustopa, Maritsa Nurfatwa, Herman Irawan, Usmar Usmar, Aliyah Putranto, Jin-Wook Yoo","doi":"10.1080/17460913.2024.2411817","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Bacterial infections and the formation of biofilms are currently key factors in the delay of wound healing. S-Nitroso glutathione (GSNO) is recognized as a nitric oxide (NO) donor that exhibits potent antibacterial and antibiofilm activities. However, some of the stability limitations of NO require it to be prepared pharmaceutically.<b>Materials & methods:</b> Here, we developed a self-healing hydrogel dressing consisting of GSNO, polyvinyl alcohol/borax (PVA/B) and carboxymethyl chitosan (cmCHI). This research aimed to determine the antibacterial and antibiofilm activities of a self-healing hydrogel (PVA-B-cmCHI/GSNO) against multiple bacteria and polymicrobial biofilms.<b>Results:</b> Forty mg/ml PVA-B-cmCHI/GSNO significantly increased the antibacterial activity against <i>Pseudomonas aeruginosa</i>, <i>S. aureus</i>, Methicillin resistant <i>Staphylococcus aureus</i> (MRSA), as indicated by a >5 log reduction in bacterial viability (∼99.999% killing). PVA-B-cmCHI/GSNO showed antibiofilm activity three-times greater than that of the blank self-healing hydrogel (PVA-B-cmCHI) by inhibiting 80% of the biofilm formation.<b>Conclusion:</b> The results suggest that the NO-releasing self-healing hydrogels exhibit notable antibacterial and antibiofilm properties and thus could be a promising approach for the treatment of bacterial or biofilm-infected wounds.</p>","PeriodicalId":12773,"journal":{"name":"Future microbiology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17460913.2024.2411817","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Bacterial infections and the formation of biofilms are currently key factors in the delay of wound healing. S-Nitroso glutathione (GSNO) is recognized as a nitric oxide (NO) donor that exhibits potent antibacterial and antibiofilm activities. However, some of the stability limitations of NO require it to be prepared pharmaceutically.Materials & methods: Here, we developed a self-healing hydrogel dressing consisting of GSNO, polyvinyl alcohol/borax (PVA/B) and carboxymethyl chitosan (cmCHI). This research aimed to determine the antibacterial and antibiofilm activities of a self-healing hydrogel (PVA-B-cmCHI/GSNO) against multiple bacteria and polymicrobial biofilms.Results: Forty mg/ml PVA-B-cmCHI/GSNO significantly increased the antibacterial activity against Pseudomonas aeruginosa, S. aureus, Methicillin resistant Staphylococcus aureus (MRSA), as indicated by a >5 log reduction in bacterial viability (∼99.999% killing). PVA-B-cmCHI/GSNO showed antibiofilm activity three-times greater than that of the blank self-healing hydrogel (PVA-B-cmCHI) by inhibiting 80% of the biofilm formation.Conclusion: The results suggest that the NO-releasing self-healing hydrogels exhibit notable antibacterial and antibiofilm properties and thus could be a promising approach for the treatment of bacterial or biofilm-infected wounds.
期刊介绍:
Future Microbiology delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this increasingly important and vast area of research.