{"title":"Synergistic in vivo anticancer effects of 1,7-heptanediol and doxorubicin co-loadedliposomes in highly aggressive breast cancer.","authors":"Muge Gu, Wei Yu, Sílvio Terra Stefanello, Jiayu Wang, Xiangqi Zhang, Yihui Zhang, Wenkai Zhang, Yuanye Guan, Victor Shahin, Yun Qian, Wei-En Yuan","doi":"10.1016/j.jconrel.2024.11.012","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer holds the highest incidence rate among women. Doxorubicin (DOX) is a potent frontline drug for the treatment of breast cancer. The anticancer mechanisms of DOX include inducing immunogenic cell death in tumor cells, causing damage to tumor DNA, and generating free radicals. However, its pharmacological efficacy and wide use are restricted by its substantial dose-dependent side effects. We have recently revealed that 1,7-Heptanediol (1,7-Hept) severely impairs the bioenergetics and metabolism of aggressive human cancer cells. In the present work, we prepared liposomes co-loaded with DOX and 1,7-Hept (DOX/1,7-Hept-lipo) and assessed their potential synergistic anti-tumor effects. In vitro studies demonstrated that 4T1 cells (the mouse breast cancer cell) exhibited higher sensitivity to 1,7-Hept and DOX/1,7-Hept-lipo could induce ICD of 4T1 cells. Cell viability was markedly reduced when 4T1 cells were treated with a combination of DOX and 1,7-Hept. In a mouse breast cancer model, the DOX/1,7-Hept-lipo exhibited superior anti-tumor efficacy compared to liposomes loaded with individual drugs, resulting in almost total elimination of the tumors at lower doses of DOX with reduced systemic toxicity. Notably, the number of immune cells significantly increased in the tumor microenvironment, and macrophages were more transformed into the anti-tumor M1 phenotype. Our findings suggest strong synergistic anti-tumor effects of DOX and 1,7-Hept, enhancing the efficacy of tumor immunotherapy and mitigating the toxic side effects of DOX.</p>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":" ","pages":"174-185"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2024.11.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer holds the highest incidence rate among women. Doxorubicin (DOX) is a potent frontline drug for the treatment of breast cancer. The anticancer mechanisms of DOX include inducing immunogenic cell death in tumor cells, causing damage to tumor DNA, and generating free radicals. However, its pharmacological efficacy and wide use are restricted by its substantial dose-dependent side effects. We have recently revealed that 1,7-Heptanediol (1,7-Hept) severely impairs the bioenergetics and metabolism of aggressive human cancer cells. In the present work, we prepared liposomes co-loaded with DOX and 1,7-Hept (DOX/1,7-Hept-lipo) and assessed their potential synergistic anti-tumor effects. In vitro studies demonstrated that 4T1 cells (the mouse breast cancer cell) exhibited higher sensitivity to 1,7-Hept and DOX/1,7-Hept-lipo could induce ICD of 4T1 cells. Cell viability was markedly reduced when 4T1 cells were treated with a combination of DOX and 1,7-Hept. In a mouse breast cancer model, the DOX/1,7-Hept-lipo exhibited superior anti-tumor efficacy compared to liposomes loaded with individual drugs, resulting in almost total elimination of the tumors at lower doses of DOX with reduced systemic toxicity. Notably, the number of immune cells significantly increased in the tumor microenvironment, and macrophages were more transformed into the anti-tumor M1 phenotype. Our findings suggest strong synergistic anti-tumor effects of DOX and 1,7-Hept, enhancing the efficacy of tumor immunotherapy and mitigating the toxic side effects of DOX.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.