{"title":"Detection of Escherichia coli Using Bacteriophage T7 and Analysis of Excitation‑Emission Matrix Fluorescence Spectroscopy.","authors":"Nicharee Wisuthiphaet, Huanle Zhang, Xin Liu, Nitin Nitin","doi":"10.1016/j.jfp.2024.100396","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional detection methods require the isolation and enrichment of bacteria, followed by molecular, biochemical, or culture-based analysis. To address some of the limitations of conventional methods, this study develops a machine learning (ML) approach to analyze the excitation-emission matrix (EEM) fluorescence data generated based on bacteriophage T7 and Escherichia coli interactions for in-situ detection of live bacteria in the presence of fresh produce homogenate. We trained classification models using various ML algorithms based on the 3-D EEM data generated with bacteria and their interactions with a T7 phage. These ML algorithms, including linear Support Vector Classifier (SVC) and Random Forest (RF), demonstrate high accuracy (>0.85) for detecting E. coli at 10<sup>2</sup> CFU/ml concentration within 6 h. Additionally, these ML models can differentiate among different E. coli concentration levels. For example, the Gaussian Process model achieved an accuracy of 92% in detecting different concentration levels of live E. coli. Application of these ML methods to detect E. coli in spinach homogenate yielded an accuracy of 89% using the linear-SVC model. Furthermore, feature selection techniques were employed to reduce the dimensionality of the data, revealing that only six features were necessary for achieving classification accuracy (>0.85) of spinach homogenate samples containing 10<sup>2</sup> CFU/ml of E. coli. These findings highlight the potential of this novel bacterial detection methodology, offering rapid, specific, and efficient solutions for applications in food safety and environmental monitoring.</p>","PeriodicalId":15903,"journal":{"name":"Journal of food protection","volume":" ","pages":"100396"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of food protection","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jfp.2024.100396","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional detection methods require the isolation and enrichment of bacteria, followed by molecular, biochemical, or culture-based analysis. To address some of the limitations of conventional methods, this study develops a machine learning (ML) approach to analyze the excitation-emission matrix (EEM) fluorescence data generated based on bacteriophage T7 and Escherichia coli interactions for in-situ detection of live bacteria in the presence of fresh produce homogenate. We trained classification models using various ML algorithms based on the 3-D EEM data generated with bacteria and their interactions with a T7 phage. These ML algorithms, including linear Support Vector Classifier (SVC) and Random Forest (RF), demonstrate high accuracy (>0.85) for detecting E. coli at 102 CFU/ml concentration within 6 h. Additionally, these ML models can differentiate among different E. coli concentration levels. For example, the Gaussian Process model achieved an accuracy of 92% in detecting different concentration levels of live E. coli. Application of these ML methods to detect E. coli in spinach homogenate yielded an accuracy of 89% using the linear-SVC model. Furthermore, feature selection techniques were employed to reduce the dimensionality of the data, revealing that only six features were necessary for achieving classification accuracy (>0.85) of spinach homogenate samples containing 102 CFU/ml of E. coli. These findings highlight the potential of this novel bacterial detection methodology, offering rapid, specific, and efficient solutions for applications in food safety and environmental monitoring.
期刊介绍:
The Journal of Food Protection® (JFP) is an international, monthly scientific journal in the English language published by the International Association for Food Protection (IAFP). JFP publishes research and review articles on all aspects of food protection and safety. Major emphases of JFP are placed on studies dealing with:
Tracking, detecting (including traditional, molecular, and real-time), inactivating, and controlling food-related hazards, including microorganisms (including antibiotic resistance), microbial (mycotoxins, seafood toxins) and non-microbial toxins (heavy metals, pesticides, veterinary drug residues, migrants from food packaging, and processing contaminants), allergens and pests (insects, rodents) in human food, pet food and animal feed throughout the food chain;
Microbiological food quality and traditional/novel methods to assay microbiological food quality;
Prevention of food-related hazards and food spoilage through food preservatives and thermal/non-thermal processes, including process validation;
Food fermentations and food-related probiotics;
Safe food handling practices during pre-harvest, harvest, post-harvest, distribution and consumption, including food safety education for retailers, foodservice, and consumers;
Risk assessments for food-related hazards;
Economic impact of food-related hazards, foodborne illness, food loss, food spoilage, and adulterated foods;
Food fraud, food authentication, food defense, and foodborne disease outbreak investigations.