Float solenoid balun for MRI.

IF 2.7 4区 医学 Q2 BIOPHYSICS NMR in Biomedicine Pub Date : 2024-11-08 DOI:10.1002/nbm.5292
Ming Lu, Yijin Yang, Shuyang Chai, Xinqiang Yan
{"title":"Float solenoid balun for MRI.","authors":"Ming Lu, Yijin Yang, Shuyang Chai, Xinqiang Yan","doi":"10.1002/nbm.5292","DOIUrl":null,"url":null,"abstract":"<p><p>Baluns are crucial in MRI RF coils, essential for minimizing common-mode currents, maintaining signal-to-noise ratio, and ensuring patient safety. This paper introduces the innovative float solenoid balun, based on the renowned solenoid cable trap, and conducts a comparative analysis with the widely used float bazooka balun. Leveraging robust inductive coupling between the cable shield and float resonator, the float solenoid balun offers compact dimensions and post-installation adjustability. Through electromagnetic simulations and bench testing across static fields (1.5, 3, and 7 T), the float solenoid balun demonstrates superior common-mode rejection ratios compared to the float bazooka balun. Notably, its float design facilitates easy post-installation adjustment and eliminates the need for soldering on the cable shield, enhancing usability and reducing risks. Furthermore, the solenoid balun's compact footprint addresses the increasing demand for smaller baluns in modern MRI scanners with denser coil arrays. The float solenoid balun offers a promising solution by conserving valuable space within the RF coil, simplifying practical hardware implementation and cable routing, and accommodating more elements in RF arrays, with great potential for enhancing MRI performance.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5292"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Baluns are crucial in MRI RF coils, essential for minimizing common-mode currents, maintaining signal-to-noise ratio, and ensuring patient safety. This paper introduces the innovative float solenoid balun, based on the renowned solenoid cable trap, and conducts a comparative analysis with the widely used float bazooka balun. Leveraging robust inductive coupling between the cable shield and float resonator, the float solenoid balun offers compact dimensions and post-installation adjustability. Through electromagnetic simulations and bench testing across static fields (1.5, 3, and 7 T), the float solenoid balun demonstrates superior common-mode rejection ratios compared to the float bazooka balun. Notably, its float design facilitates easy post-installation adjustment and eliminates the need for soldering on the cable shield, enhancing usability and reducing risks. Furthermore, the solenoid balun's compact footprint addresses the increasing demand for smaller baluns in modern MRI scanners with denser coil arrays. The float solenoid balun offers a promising solution by conserving valuable space within the RF coil, simplifying practical hardware implementation and cable routing, and accommodating more elements in RF arrays, with great potential for enhancing MRI performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于核磁共振成像的浮动电磁平衡器。
平衡器在核磁共振射频线圈中至关重要,对于最大限度地减少共模电流、保持信噪比和确保患者安全至关重要。本文介绍了基于著名的螺线管电缆陷波器的创新型浮子螺线管平衡器,并与广泛使用的浮子巴祖卡平衡器进行了比较分析。浮控电磁平衡器利用电缆屏蔽和浮控谐振器之间强大的电感耦合,尺寸紧凑,安装后可调。通过静态场(1.5、3 和 7 T)的电磁仿真和台架测试,浮子螺线管平衡器与浮子巴祖卡平衡器相比,具有更出色的共模抑制比。值得注意的是,其浮动设计便于安装后调整,无需在电缆屏蔽上进行焊接,从而提高了可用性并降低了风险。此外,螺线管平衡器占地面积小,满足了线圈阵列更密集的现代核磁共振扫描仪对小型平衡器日益增长的需求。浮动螺线管平衡器提供了一种有前途的解决方案,它节省了射频线圈内的宝贵空间,简化了实际硬件实施和电缆布线,并可在射频阵列中容纳更多元件,在提高磁共振成像性能方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
期刊最新文献
The effect of fat model variation on muscle fat fraction quantification in a cross-sectional cohort. Improvement of MRS at ultra-high field using a wireless RF array. Very-long T2-weighted imaging of the non-lesional brain tissue in multiple sclerosis patients. Simultaneous whole-liver water T 1 and T 2 mapping with isotropic resolution during free-breathing. Automatic pipeline for segmentation of LV myocardium on quantitative MR T1 maps using deep learning model and computation of radial T1 and ECV values.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1